“ AD-A4131 501 YERIFICATION OF CONCURRENT PROGRAMS: A TEMPORAL PROOF
SYSTEM(U) STANFORD UNIY CA DEPT OF COMPUTER SCIENCE

Z MANNA ET AL. JUN 83 STAN-CS-83-367 NGGBBB-gZEC—9259

/G 872 .

UNCLASSIFIED

O a S AN A 4 2o aun s aoll SO WAl At alin S ARt et Saai e ant Iyt S e Al TR A A I I e e M A A T A N AR LA S Ay R .-—1

ATt . . . - M.

10 e
== & |2 122 ‘
(B

I
I

2

T

il
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 19634

e A

e

................ PRt AR S s bt e b Svut S R it it A e it ot ol o o A SN o Ve W W T g TR T

June 1983 Report No. STAN-CS-83-967

Verification of Concurrent Programs:
A Temporal Proof System

. L_’J_u e -“‘ALA.“I;I 4¥A_AA:_- P _A! AL_L — -__.L‘.Axg o d

by

Zohar Manna and Amir Pnueli

AD A 131501

9 -
; ‘..‘._ """.
4

.4

=

i

Department of Computer Science

Stanford University
Stanford, CA 94305

: N ¢ ot v 'v. . * . -
’ Tt . . ‘ . N 0 . 8
w3 aa's a8 atlf ta el e e

4

o
USSR,

DT FILE copy

Q0
&L
' -
L 4
. 9 _9

Mt i ng S et Mg Sl sesd Suad Cost dhasl Rend i Shug Jem bl S Sl JRnit st Banibe T At S AL S seh Jeet St s Sl P e

-1
»

VERIFICATION OF CONCURRENT PROGRARMS:

A TEMPORAL PROOF SYSTEM "
by E
ZOUHAR MANNA AMIR PNUELI ~
Computer Science Department Applied Mathematies Departinent !
Stanford University The Weizmann Institute of science
Stanford, CA Rehovolh Isracl
and
Applied Mathemaltics Department
The Weizmann Institute of Science
Rchovoth [srael
{\ ABSTRACT
\7/\ proof systemn based on temporal logic is presented for proving properties of coneurrent.
programs bascd on the shared-variables computition model. The system consists of vhree parts:
the general uninterpreted part, the domain dependent part and the program dependent. part. In the g
geaeral part we give a complele proof system lor {irst-order Lemporal logic with detailed proofs of :]
usclful theorems. 'This logic cnables reasoning about general Lime sequences. The domain dependent .{
part characterizes the special properties of the domain over which the program operates. The 5
program dependent part introduces program axioms which restrict the time sequences considered B
to be exceulion sequences of a given program, ,
1
The utility of the full system is demonstrated by proving invariance, liveness and precedence R
properties of several concurrent programs. Derived proof principles for these classes of propertics, o
are oblained and lead 1o a ecompact representation of prools, :j-
\ 3
o9
3
.
This paper appears in the Proceedings of the (-Lth School of Advanced Programming, Aasterdam,
iloNand (June 1982).
)
-4
[- ' This research was supported in parl, by the Nalional Science Foundation under grants MCST79-
= 09495 and MCS80-06930, by DARPA under Contract NOOD3-82-C.0250, by the United States
L q Air Foree Office of Scientific Rescarch under Grant AIFOSR-81-0014, and by (he Basie Research]
- Foundation of the lsracli Academy ol Scienees, -]
E :
1 ;
]

3

b

§ .

L

“' . DD S ST SR WP GRS GRS W P . — : N . A A e m it aiatoa_aoa-. a - -

. v B e e e T ETTE W I A A A e L L PR e L R e

A. INTRODUCTION

In this work we present a prool system based on temporal logic for proving the properties of
concurrent programs. We refer the reader to [MP1] for a more detailed discussion of the compu-
tational model of concurrent programs, and the advantages ollered by the language of temporal
logic in formulating properties of concurrent programs.

1. THE TEMPORAL LANGUAGE: SYNTAX AND SEMANTICS

Woe first describe the temporal language we are going to use. This language contains special
constructs that are suitable for rcasoning aboul programs.

The language uses a sel of basic symbols consisting of iudividual variables and constants,
propositions, and function and predicate symbols. The sel is partitioned into two subsetls: global
and local symbols. Intuitively speaking, the global symbols denole entitics thal do not change
duriong a program cxecution. The local symbols, on the other hand, may change their meanings
and values in different states throughout the exccution. For our purpose, the only local symbols
that interest us are local individual variables and propositions. We will have global symbols of all
types.

We use the usual set of boolean connectives: A, v, D, =, and ~ together with the cquality
predicale = and the first-order quantifiers V and 3. These operators are referred to as the classical
operators. The quantifiers ¥V and 3 arc applied only to global individual variables.

The modal operators used are: O, O, O, and U, which arc called respectlively the always,
sometime, next and until operators. The first three operators are unary while the U operalor is
binary. We use the nezt operator, O, in two different ways - as a temporal operator applied Lo
formulas and as a temporal operator applied to terms.

A model (I, o, o) lor our language consists of a (global) interpretation /, a (global) assignment
a and a sequence of stales o.

e The interpretation I specifies a noncmpty domain D and assigns concrete cle-
ments, functions and predicates to the (global) individual constanls, Munction
and predicate symbols.

o The assignment « assigns a value over the appropriate domain to cach of the
global individual variables.

o The sequence 0 = 3g,8,, ... is an infinile sequence of states. Bach state s;
assigns values to the local individual variables and propositions.

SN
R
. A

sy e e —————t

!

v

N .
N
r\
A\
N

. =

o aaad ot

W

I'or a sequence

0 = 80,81y «++

we denote by
U(i) = 84y 8{41y -+

the z-truncated suflix of o.

Given a temporal formula w, we present below an inductive definition of the truth value of w
in a model (/, a, o). The value of a subformula or terin 7 under (I, a, o) is denoted by 7|9, with
I being implicitly understood.

Consider first the cevaluation of terms:

o For a local individual variable or local proposition y:

yl: = SO[y];
i.e., the value assigned to y in sg, the first state of o.

e I'or a global individual variable u:

o

uly = alul,

i.c., the value assigned to u by a.

o [or an individual constant the evalualion is given by I:

e} = Ie].

e lor a k-ary funclion f:

Sty ooty =1t g, st),
i.e., the value is given by the application of the interpreted function I[f] to the
values of ¢y, ..., ¢k evaluated in the model (1,a,0).

S o foratermi:
(Ot)lg = t|:(,,,

i.e., the valuc of Ot in ¢ = sg,81, ... is given by the value of t in the 1-
h truncated sullix oY) = sy, 89,

Consider now the cvaluation of formulas:

o lor a k-ary predieatle p (including equality):

Pty s tidlg = 1pl(tl gy - 8l 3)-
Here again, we first cvaluate the arguments in the model and then test /[p} on
them.

PP

" o i an a0 au
TR] . . L. T

e ['or a disjunction:
(wi V wg)|g = true if and only if w|g = true or wy|) = true.

And similarly for the other binary boolean connectives v, D, and =,

b
b .
3

e

L alendnbunbendoniecsfocalonihsfocnd T G P WA YONT TP U W L0 S Wi WA Y W W WY AP G GG AP NV W WL AT VP 3 Sl

EaliR i Gt A et e = et i o e Sl i et oai it S ety masel SPAL BR S S Snet e e T T T T T T T

1

'
.

i

»

®. . ..
LU PP Ay W P 1 .

o] .

o
N

b,y

-

. -

et “-‘;L.‘,.A‘_!n_g.l"__;;*‘-;.x! et

[{

_¢ A_A.a &

!Al‘

i
oo tal . _ A

. _ .. B,

o lor a negation:

(~w)|S = true if and only if w|; = false.

e For a next-time application:
a _ |«
(Ow)ly =wljn.

Thus O w means: w will be Lrue in the nezt instant - read “next w”.

e l'or an all-times application:
(Qw)|S = true if and only if for every k > 0, w| 5w, = true,
i.e., w is true for all sullix scquences of . Thus O w means: w is true for all
future instants (including the present) - read “always w” or “henceforth w”.
e For a some-time application:

(O w)|Z = true if and only if there exists a k >0

5. GDE RO TR

2 YN . a _ .
- such that w|?, = true, .
. i.e., w is true on al least one sullix of ¢. Thus O w means: w will be true for .
- some [ulure instant (possibly the present) - read “sometime w” or “cventually :
. w”. ~
F‘ e [or an until application:)

wUwsg|S = true if and only if for some k > 0, wz| w, = true and
for all 4,0 <4 < k, wy|3,) = true.

Thus w; Uws means: there is a future instant in which ws holds, and such Lhat "

untd Lthal instant wy continuously holds read “w; until wp” ([KAM], [GPSS)). P

e For a universal quantification: i

! -

(Vu.w)| == true if and only if for cvery d € D, w|%, = true, 3
where o = a o [u «— d] is the assignment obtained from « by assigning d to u. J

e IFor an exisltential quantification: 3

:

. . ' 4

(Fu.w)ls = true if and only f for some d € D, w|%, = true, -

where of = ao[u « d|. :
Following are some examples of Lemporal expressions and their inluitive inlerpretations: .*

u D Qv If w is presently true, v will eventually becomne Lrue. -
O(x > Ov) Whenever u becomes true it will eventually be lollowed by v. 1
C0Ow At some Tuture instant w will become permanently true.]

Olw A O~w) There will be a future instant such that w is true at that instant
and false al the next.

L]

] OCw Isvery future instant is followed by a later one in which w is true, -
-

4)

_1

i"' e . o P A Wy WSO S FURGEIAE VURE VUNE SN S PO S N WU WU SO SR PRSP SR SHE WG S VO AU TR Ol SRS G S L"h*gu&p"j

I R L e e S A AL G S A A A e |

1.0 .

I

thus w is true infinitely often.

O(x o Ov) If u ever becomes true, then v is true at that instant and ever after. -
)

- Ou v (ulv) Either u holds continuously or it holds until an occurrence of v. -
This is the weak form of the until operator that states that v will hold ‘

continuously until the first occurrence of v if v ever happens 1

or indelinitely otherwise. j

!.‘

g

Qv D ((~v)Uu) If vever happens, its first occurrence is preceded by (or coincides with) w.

If w is true under the model (I, @, o), we say that (I, «, o) satisfies w or that (I, «, o) is a
(satisfying) model for w. We denote this by

|

‘@
e

(I, a, 0) F w.

A formula w is satisfiable if there exists a satisfying model for it.

A lormula w is valid it it is true in cvery model; in Lhis case we write

E w.

Sometimes we are interested in a restricted class of models C. A formula w which is true for
every model in C is said to be C-valid, denoted by

CEw.

Example:

The formula O(wy Awg) D (O wy A O wy) is valid, i.e.,

E Olwy A wg) D (Quwy A Owy).

It says thal il there exists an instant in which both w; and wg are true then there exists an instant
. in which w, is true and there exists an instant in which ws is true. .
‘_ Reversing the implication does nol yield a valid formula, i.c., '_
. ;

¢ P .

Pt B (Qwy A Qwy) D O(wy A ws) o,

For, consider an interpretation consisting of a sequence of states:

o 80, 81,

 {
- . Q{
' ,

vy TR T TR T T N T TS T T T T 1T Ohiac AR St A O T L I A

such that wy is true on all odd numbered states and false elsewhere, and wy is true on all the even
numbered states and false on the odd ones. Then certainly both O wy and O wy are true on o,
henee O wy A O wy is true. On the other hand, there is no state on which both wy and wy are
true simultancously. lence O{wy A wy) is false. Consequently the implication is false under the
interpretation o. a

2. THE PROOF SYSTEM

Having defined valid formulas, we naturally look for a deductive system in which validity ean
be proved. In such a system we take some of the valid formulas as axioms and provide a set of
sound inference rules by which we hope Lo be able to prove the other valid formulas as theorems.
A formula w is a theorem of the system cither if it is an axiom of the system or has a proof in
which il is derived from the axioms using the inference rules of the system. We denote the fact
that w is a theorem is provable wilhin the system by F w.

Qur interest in the temporal logic formalism is mainly motivated by the applicability of this
logic to proving properlies of concurrent programs. Thercfore, apart from developing the general
basie logical properties of the operators and their interrelalions, we will mostly be interested in
properties that are valid over computations of a given concurrent program 2. Thus, the notion of
validity our system will try to eapture is thal of a formula being true for all possible computations
of the given program, and not necessarily over an arbitrary model. This corresponds Lo the coneept
of A(#°)-validity where A(F?) is the class of all models corresponding to computations of 2.

We structure our proofl system into three main layers dependent on the universal validity of
the theorems that can be derived in each layer. Tn the first layer, called the general part, we deal
with the general temporal properties of discrete linear sequences (arbitrary models). Theorems
proved in that part are valid for all sequences over arbitrary domains. They universally hold for
arbitrary computations of all programs over such domains, as well as for sequences which cannot
even be derived as the commputations of a program. In the next layer the domain part, we restrict
our attention to a particular domain D and provide tools for proving validity over models all of
which are inlerpreted over D, The third, most restrictive layer is the program part. llere we
restrict our atleation Lo a particular program I? and develop tools for proving validily only over
models whose scquences are legal compulations of £,

In a forthecoming paper, the program dependent part is proved to be complete relative to the
general Lemporal theory over the dita domain. We also show that its dependencee on the particular
cornputation model studied is modular, by presenting a similar system for proving propertics of
CSIP programs.

6

(. S R D O S I bl S PR S U SN Y A SO NP S S . -~ PO DRI S Y

.

-

A 4 4 4.

»._J ¥

R .

— e mmn

A At &b aneh ie R

B. GENERAL PART

We stort the general part by describing first Lthe axiomatic system for propositional temporal
logic in which we do not. admit predicates or quantification,

3. THE PROPOSITIONAL TEMPORAL SYSTEM (O,¢,0 AND u)

The proof system for the propositional part consists of the Tollowing axioms:

AXTIOMS:

Al F~QCw=0~w

A2. F O(w; D wy) D (Ow; D Owy)

A3, F0w D w

Al FO~w=~0w

A5. F O(w; D wy) D (Ow; D Owy)

A6. FOw D> Ow

A7. FOw > O0Ow

A8. FOw D Ow) O (w D> Ow)

A F (wUwy) = [we vV (wi A O(w Uwy))]

A10. + (w Uwe) DO Ows.

Axiom Al delines © as the dual of [J; it states that at all Limes w is lalse if and ornly if 1 is

nol the case that sometimes w holds. Axiom A2 states that if universally wy implies wg then if

ab all times wy is true then so is wy. Axiom A3 establishes the present as part of the future by
staling that if w is true at all future instants it must be true at the present. Axiom A4 establishes
O as sell-dual. Consequently it implies thal the next instant exists and is unique, and restricts our
models to lincar sequences (no branching). Axiomn A5 is the analogue of A2 for the O operator.
Axiom AG stales that Lhe next instant is one of the luture stales. Axiom A7 states that if w
holds in all future instants it also holds in all instants which lie in the future of the next instant.
Axiom A8 is the “computational induction” axiom; it states thal il a property is inherited over
one step transitions, it is invariant over any sullix sequence whose first stabe satisfies w. Axiom AY
characterizes the untid operalor by distributling its ctfect into what is immplied lor Lhe present and
whalt is implied for the next instant. Axiom A10 simply states that “wy until wy” implies thal wa
will eventually happen.

B
—3
o

<

<

!

)
_1

J
-

INFERENCE RULES:

R1. Propositional Tautology — PT

Il u is an instance of a propositional tautology then b u
R2. Modus Ponens — MP

If FuDwv and F u then F v

R3. O Insertion — Ol

If v then F Ou

All these rules are sound. The soundness of R1 and R2 is obvious. Nole that in R1 we also
include temporal instances ol tautologics; we may substitute an arbitrary temporal formula for a
proposition letler in obtaining an instance. l'or example, the formula Ow D Ow is a temporal
instance of the tautology p D p. To justify R3, we recall that validity of w means thatl w is true in
all models, hence Ow is also valid.

DERIVED RULES AND THEOREMS:

Before giving some thcorems that can be proved in Lhis system, we develop scveral useful
derived rules:

Propositional Reasoning - - PR

Flug Aug A ... Aup) D v
Fuy, Fus, ..., and + u,

kv

The notation above is used to deseribe infercnce rules. It has the general form
Fo, Fo, ooy Fom
k¥

and means that if we have alrcady proved oy, ..., pm (the assumptions or premises of the rule),
we are allowed by this rule to infer 9 (the conclusion or consequent of the rule).

Proof:

The rule PR follows from the propositional tautology (Rule R1)
Fllur Aug A ooo Aun)Dv] D fuy D(uz D(...(un 2 v)...))

by applying MP (Rule R2) n + 1 times. 4

.3

oo '
PRSI T Pl Oy

{-

PPy P

P,

. l - r AR
- FRN

Whenever we apply this derived rule without explicitly indicating the premise
Fug Aug A ... Auy) D o, }

it means that the premise is an instance of a propositional tautology.

O Insertion — Ol

LA e M o S0 Lo £ gitud M Sy
St - LA

. Fu - 4
F FOu °
4
: Proof: .
. E
$ 1. Fu given _ 3
*
2. FQOu by OI _

3. FOu by A6 and MP
-t :
The first theorem that we derive in the system is: .§
Ti. Fw 23 Cw B
»
Proof:]
by
a 1. F(Q~w) D ~w by A3 -]
: 2. Fw D(~0O~w) by PR k
3. FwdOw by Al and PR .1‘

. |

. S
.'."n'.'. .
A

‘I'he theorem implies (by MP) the derived rule

BV SR

O Insertion — Ol

Fu g

FOu ;1

L)

E
. T2. FOw 2> Ow "]
= A
- Proof:]
o

1. +(@~w) D (O~w) by A6

AAAAA

2. F(~O~w) D (~O~w) by 'R
3. FOw > QCw by Al, A4, and [’RJ

"The following three rules (and a similar rule for the until operator presented later) show that
all the temporal operators arc monotonic in the sense that an argument may be replaced by a
weaker statement yielding a weaker expression.

00 Rules
FuDw Fu=v
(a) —22)
FOxw 2> 0Ov FOu = Ov
Proof of (a):
1. FuDw given
2. F0O(x D v) by Ot
3. FO(x > v) 2(@uw > Ov) by A2
4. +F0Ou D Ov by 2, 3 and MP

Rule (b) then follows by propositional reasoning by using the tautology

(u2v) Afv Du)] = (u = v). 4

<& O Rules
FuDdw Fu =vw
(a) - (b) ————
FOu D> Cvw FOu = Ow
Proof of (a):
. FPuDw given
2. F~v D~u by PR
3. +0O~v > 0O~u by OO
4. F~Ov D ~Ou by Al and PR
5 FOu 2 Ouw by PR

Rule (b) then follows by propositional reasoning. iy

fal ol o a0 o) o

N X

. o f
el
! OV I S YWY

¥
Amd

e g
- e

U I"

Pl 228 A A0

e DA RGN

3
",
b
S
b
-
b
o~
t,

b

\L'
v
v
X
b~
&
[5

| AR

. R S)

O O Rules
Fu>ouw Fu =

F Ou D> Ov F Ou

Ov

Proof of (a):

. Fu 2w
2. FO(u > v)
3. FOu 2> Ovw

Rule (b) follows by propositional reasoning.

|

L U

given

by OI

by A5 and MP

Computational Induction Rule - CI

Fu> Ou
Fu > Ou
Proof:
1. Fu > Ou given
2. FOu > Ou) by O
3. FO > Owu) D (v D Ou) by A8
4. Fu 2 Ou by2,3andM1’-l
Derived Computational Induction Rule - DCI
Fu>d (vAOu)
Fu D>Ov
Proof:
I. Fu 3 (vA Ou given
2. +u 2 Ou by PR
3. Fu D> Ou by CI
4. Fu 2w by 1 and PR
5 F0Ou D> Ov by Q4
{1

4 £ il mm - a

BN

®

...

~

6.

Fuv D Ov

- Ty~

— e S e Sene Saes ew

by 3, 5 and l’ll-l

The following two theorems show that the O and © operators are both idempotent:

T3. FOw = 00w

Proof:
1.
2.
3.
4.
T4, FOw
Proof:

FOOw > Ow
FOw > O0w
FOw D> O0w
FOw = 00w

OQw

F~Qw O~w

in

FO~w = O00~w
FO~Cw = O0~w
FO~Cw = ~OQw
FaOw = ~00w
FOw = O%w

by A3
by A7
by CI

by {, 3 and PR
d J

by Al

by T3

by 1 and OO

by Al

by 1, 2, 3, 4 and PR

by PR |

Because of these last Lwo theorems we can collapse any string of consccutive identical modalities
suchasO ... Oor O ... O inlo asingle modality of the same Lype.

The lollowing theorem eslablishes thal O is Lhe dual of ©. Note that Al states thal € is the
dual of O, e, Qw = ~DO~w.

T5. F (O~w) = (~0Ow)

Proof:

F(~~w) = w

12

PG TIPS e Py W P W Y -

by DT

e, .4

O, W

e LS . J

—a®

AR N Aaad e et i St i S A e A e AR

R YN -~ . '

2. F({O~~w) = 0w by OO
3. F(~O~w) = 0Ow by Al and PR i
4 F(O~w) = (~Ouw) by PR

T6. D(wl D lUQ) D (Owl 2 <>w2)

Proof:

1. F{w; D wy) = (~wg D ~wy) by PT
2. FO(w; D we) = O(~wg D ~wy) by OO
3. F D(N'LU2 o] ~’LU|) D (DN’H}Q D El~w|) by A2

j-sv? WL TR
o

4. F(O~w; 2 O~wy) = (~Qwz D ~Owy) by At and PR
F(~Qws D ~Qw) = (Cwy 2 Quws) by PT
- 6. FDO(w D wy) O (Cw D Ows) by 2, 3, 4, 5 and I’RJ

CEACEa e}

ACSURS s aur s 2 Siic] IR At A asen &)
B AN P L, 4 o
T R .o . ottt
. LT . ‘ . DRI
[e Lttt . Pt

The following thcorems show the interaction between the temporal and the boolean operators.

T7. F D(wl A ’U)z) = (D'U)l A D'U)z)

Proof:

1. F(w A wg) D w by PT

2. FOw; A wg) D 0Owy by OO

_ 3. F(wg A wg) D wy by PT

P 4. FOw; A wg) D Owy by OO

%V 5. FDO(w; A wy) D (Owy, A Quws) by 2, 4 and PR
}. 6. Fw D (w2 O w A wy) by PT '
L 7. FOw; > O(wz D (wy A wy)) by OO ‘
E ‘ 8. F D(w-,; D (wy A U)2)) D> (Owy D Dwy A wz)) by A2 i
E. 9. +FDOw; 2 (Owz 20w A wg)) by 7, 8 and PR . 4
‘[10. F(Dw, A Owy) D> Owy A we) by PR -_3
i
|
)
o

R AL L A A e L A A N i S e e e e e T A A

1. F DO(w A wy) = (Owy A Quwy) by 5, 10 and I’R-'

T8 F Ow; V wp) = (Quwy vV Owy)

Proof:
. FO~w, vV wg) = 0O(~wy A ~wg) by T and OO
2. FO(~w A ~wg) = (O~wy A O~wg) by T7
3. F(O~wi A O~wg) = ~(~O~wy Vo~ O~ws) by PR
4. FO~w, V wp) = ~(~0~wy V ~0O~ws) by 1, 2, 3 and PR
5 F ~O(wy V wy) = ~(Qwy vV Owp) by Al and PR
6. FO(wy Vw) = (Qwy vV Ows) by PR-I

Note that because of the universal character of O it can be distributed over A (Theorem 1'7),
while O, which is of existential character can be distributed over V (Theorem T8). Next, we show
that interchanging a temporal operator with a boolean operator of the opposite character yiclds
implication in one direction only; the implicalion is not necessarily truc in the other dircction.

T9. +(Owy; v Owg) O O(wy V wy)

Proof:
. +0Ow; D O(w; V wsy) by PT and OO
2. FOw; D O(w; V we) by PT and OO
3. +(Qw, v Owg) D O(w, V wp) by 1, 2 and PR-I

TI0. F O(wy A wp) D (Qwy A Ows)

Proof:
1. FO(w A w) D Qw by PT and ¢ ¢
2. FO(w A wy) DOuwy by PT and © ¢
3. FO(wy A wy) D(Cw A Owyg) by 1, 2 and PR

. |

14

e "

e —— TN w N T T T LT —T———

,r,rvw,—,—.‘
Ty
&l

.,
<4
i
[
1}
L
L
1
hmtiines O _..‘_J

TLL. + (Elw1 A <>’ll)2) D O(wl A ’U)2)

L
- Proof:

g 1. Fw; D (wg D (wy A ’UI2)) by PT K
‘ 2. FOw D> D{wz D (w A wy)) by OO 3
- 3. F0O(w2 D (w A wy)) D (Cwe D Owy A we)) by T6 3
4. FOw, D (<> wy D Owy A 11)2)) by 2, 3 and PR
i{i 5. F(Owy A Qwg) 3 Olwy A wy) by l’RJ]

AR Next we consider the commutativity propertics of the nezt operator O. In view of A4, O
is self-dual and e¢an be considered o be of both existential and universal character. Indeed it

E’i commutes with cvery other boolcan or temporal operator as well as with quantifiers.
b Ti2. F O(w, A wg) = (Ow; A Owy)
- Proof:
1. Fwy; D (wz D (wy A wz)) by PT
2. FOw; D O(wz O (wy A 102)) by OO K
3. FO(w: 2 (w A wz))) (sz D Ofwy A wz)) by Ab ;
4, FOw; A (Owg D Ofw; A wz)) by 2, 3 and PR
5. F(Ow; A Quwz) 2 O(w; A ws) by PR .!
6. F(wy A wg) Dw by PT 1
7.+ Ofwi A wp) > Owy by OO '.
8. F(wy A wg) D we by PT .i
9. F O(wy A wg) 2 Owy by OO 1
10. F O(w; A wp) O (Owy A Owy) by 7, 9 and PR]
4 g
1. F O(wy A wg) = (Owy A Owg) by 5, 10 and I’RJ '
4
.
TI3. + O(w, V wy) = (Owy vV Owe) B

Proof:
. L. FO(~w A ~wz) = [(O~wy) A (O~awg)l by T12
2. F O(~wy A ~wg) = [(~Ow) A (~Owy)) by A4 and PR
3. FO~(w; V wy) = [(~Ow() A (~Owy)) by OO and PR
4. F ~Ofw, V wy) = ~(Ow; vV Owy) by A4 and PR
5 F O(wy V wz) = (Owy V Owg) by I’R-l
E. Ti4. F Ofw; D wg) = (Ow; D Ows)
l:' Proof:
E 1. F O(~w, V wp) = (O~wy) vV (Owy) by T13
:E'l 2. FO(~wy V wg) = (~Owq) v (Owg) by A4 and PR .1
” 3. FO(wi D wg) = (Ow D Ouwy) by O O and PRJ

T15. O(wl = ’U)Q) = (O‘w1 == O’U)2)
Proof:

1
{. F[O(w D wa) A Ofwz D w)] = [(Ows D Owsz) A (Owy > Owy) »
by T14 and PR -T

2. F Of(wy D w2) A (w2 D wy)] = [(Owy D Owz) A (Owz D Ow)]
by T12 and PR

3. F O(wl = ‘LU2) = (Owl = OU)2) by OO and I’R.J i

-
o
)

The previous theorems show that the next operator, O, commutes with cach of the boolean
operators. The following two theorcmns establish commutation of O with the temporal operators

D and O. R

R & AAAchatadation
1Y AT

Ti6. + OOw = OOw
Proof:
1. FOw > (w > Ow) by T

:»-.' 18

[PP AP P UL SR VUL N ST V. I AP VA ST VAP SLIP U VS LI G (UL U UL P G SN R W NP PR . SR

T W e e T ., & Wy w ey v oS A S N e g A e e

2. FOOw D> O(w >O0uw) by OO

3. FOw 2> Ow) > O0(w > Ow) by A7

4. +O0w > Ow) > Ow D> Ow) by A8 and OO

5 FO(w D Ow) > (Ow > O0w) by A5

6. FOOw > (Ow > O0w) by 2, 3, 4, 5 and PR

7. +0OOw 2> Ow by A3

8. +FOOw D> O0w by 6, 7 and 'R

9. FOOw > O00Ow by A7 and OO

10. FO0Ow > 000w by CI

11. FO0Ow D> Ow by A3 and OO

122 000w > OOw by 00

13. FOOw > OO0w by 10, 12 and PR

14. FO0Ow = O0w by 8, 13 and I’R-l
1_05’
TI7. FO%w = OOw
Proof: -"_:
. FOO~w = OO0~w by T16 -
2. F~0%w = ~0O0w by A1, A4, 00O, OO and PR)
3. FOOw = O0w byPR-l |
@
TI8. FOOOw = ©0Ow A
Proof: R J
1. +000w D> O0w by A3 1
2. FOw > O0w by A7 ~.1
3. FoOw > ¢00w by © O 0

4. FOO0Ow > 000w by T17 and PR
1

L AL A
DAY

A

5 FO0Ow D> OO0 0w by 3, 4 and PR
6. +O0w > 000w by CI
7. +0OOCOw = O0w by 1, 6 and l’R-l

T19. FO0OOw = OCw

Proof: By duality from T18.

These last two theorems together with T3 and T4 (00w = Ow and ¢ O w = O w, respee-
tively) give us a normal prefix form for a string of the form

mymsy... mk(w)v

where cach my is cither O or ©. We use first T2 and T3 to collapse any substring of the form O™
and O™ to asingle O or ©. What remains must be a string of alternating O and . If it conlains
more than one operalor then it is equivalent by T18 and T19 to a string with just two operators -
the last two. Consequently any string such as the above must be cquivalent to one of Lhe following
four possibilities:

Ow, Cw, OCw or <O0w.

In the more gencral case that the string also contains somc occurrences of the nexl-time
operator O, we may use the commutation of O with both O and © to obtain the four normal
forms:

O*Ow, O¥Ow, O*OOw and 0O*O0Ow

for some k£ > 0.

T20. FOw = (w A ODw)

Proof:
. FOw D> w by A3
2. FOw > O0Ow by A7
3. FOw > (w A OQOw) by 1, 2 and PR
4. 00w 2> O(w A O0Ow) by OO
5 F(w A OQOw) > O(w A OO0Ow) by PR
18

A A .4 e A a A tm tm oo oa o= o

e

-

o,]

6. F(w A OOw) > Ow A OOw)
_ 7. 0w A OOw) > Ow
Aa 8. F(w A OCOw) > Dw

9. FOw = (w A OOw)

. T2, +Ow = (w vV OQw)

’ Proof:

m . FO~w = (~w A OO~w)
2. F~Ow = ~wvVv ~00~w)
3. F~O0O~w = O0%w

4. FOw = (wV OOw)

T22. F(w A O~w) D Olw A O~w).

instant and false at the next.

Proof:
I. FOw > Ow) D (w 2> Ow)
F~w 2 0Ow) D ~0Ow > Ow)

Rl

F(w A ~Ow) 2 O~(w D> Ow)
4. FO~w D Ow) = Olw A ~Ow)

[

F{w A ~Ow) 2 O(w A ~Ow)
6. F{w A O~w) D Ow A O~w)

19

by CI
by PT and OO
by 6, 7 and PR

by 3, 8 and ’R
y d

by 120
by Al and PR
by A4, A1, O O and PR

by 2, 3 and PR
d .|

Theorems T20 and T21 give a fixpoint characterization of the O and © operators respectively.
They cach give an equation using only boolean operators, the formula w and the operator O. The
solutions Lo these equations are Ow and © w respectively. This shows thal in some sense O is the
most basic operator since the other operators may be defined by means of fixpoint equations using
O. Axiom A9 similarly characlerizes the U operator by a fixpoint cquation.

This is the dual of the “computational induction” axiom A8. It stales that if w is truc now
and is false sometime in the future, then there exists some instant such that w is true at that

by A8

by PR

by TH and PR
by P and ¢ O
by 3, 4 and PR

by T5, A4 and I’R-I

R SR

Y . VIRV

ot

e .,

3

v p e DI Ahan arw S e aats MR SERl LM Sraa sa f

FREREREEN . DU

The following derived rules correspond to proof rules existing in most axiomatie verification
systems:
“ . Consequence Rules
-.: 0Q rule OQ rule OQ rule
. L uy D ug Fuy D ug Fup D ug
o ~uz D Oy Fuy, 2 Oy Fu D Oy
' vy D vy vy 3 vy v D v
‘ Fuy D Owy Fui 2 Qv Fu D Ou
Proof of OQ: ‘
. -y
. Fup D ug given .;
2. Fuy 2 QO given 1
3 kv D v) given ;
-4
4. F v D Ow by 3 and © O o
5 Faup D O by 1, 2, 4 and I’R)
o
)
The OQ and OQ rules are proved similarly by the O O-rule and O O-rule, respectively. b
Concatenation Rules :
OcC rule OC rule X
Fv D Ov Fu> Ou j
v D> Ow FvDo Ow .1
Fu > Ow Fu2d Ow '.-';
3
Proof of [C: '
.)
I. Fu D 0w given
2. Fv D 0Ow given .
3. FOv > 00w by 2 and OO
4. F0Ov > Ow by T3 aud PR)
5. Fu D 0Ow by 1, 4 and PR :
ol
The OC rule is proved similarly by the © O-rule. Note that the corresponding OC rule docs]
not hold. :
20

y
L
L
L
L
4
L
r
P
1
L
o
L
o
.
B
E
4
o
p
E
.
A
E
r
4
o
4
r
L
p
-
4
o
L
q
-
«
o

UNTIL DERIVED RULES AND THEOREMS:

&
.) T

{ Right Until Introduction - RUI
- Fw > Ov
FwD[vVv(uA Ouw)

Fw D (ulv)
g Proof:
. w2 Ouw given
‘ 2. Fw D [vV(uA Ouw) given
: 3. FvV (uA O(ulUv))] o (ulv) by A9 and PR
4. F ~(ulv) O [~v A (~u v O~(ullv))] by A4 and PR
5 Flw A ~(ulv)] 2 [~v A Ow A O~{ulv) by 2, 4 and PR
6. F[w A ~(ulv)] > [~v A O(w A ~(ulv))) by T12 and PR
7. Flw A ~(ulv)] > O~v by DCI, ._'-1
taking u to be w A ~(ulv) and v to be ~v :
8. F[w A ~lv)] > ~O~v by 1, T5 and PR .
{ L
9. Fw 3 (ulv) by 7, 8 and PR]
J ";1
The RUI rule, together with axiorns A9 and A10, can be viewed as a characterization of the]
ulv construct as a mazimal solution ol the two implications: o
4) {ZD [vV (A Oxz) j:
. % Ry
2 2 Qv B

The ordering by which maximality is defined is the ordering induced by defining false T (rue.

Axioms A9 and A0 imply that

g (xUv) 2 [v vV (v A Ouliv)) .)
- (ulv) O Ow
c .
Thus they show z = ullv to be a solution of the implications (+). The rule RUI stales that any]
other solution 2 = w must satisly w D (ullv) which Linplics that whenever w is true so is ulwv.
Interpreted in our ordering this is representable as w T (wlUv). Thus z = ulwv is the maximal
solution to («).
{ An intuilive explanation as to why nlwv is indeed the maximal solution of (&) can be given as - @
} follows:)
1

21

I
Y e T

Let w be any proposition satisfying (x) everywhere in a sequence ¢ = 8g, 81, We note
that (+) may have many solutions. In particular z = false is a trivial solution. However an obvious
property of every solution w is that if w is true in some state 8;, this state must satisfy u and the
next state 8,4, must also satisfy w unless s; satisfies v. Thus once w is true it can stop being true
only in a v-slate. In view of the second implication such a v-state is guaranteed. Conscquently
whenever w is truc in a state, ullv must also be Lrue in that state.

Left Until Introduction — [.UI

Flov(enOuw)] d>w

F(ulv) O w
Proof:

. Flov(euAOuw)d>w given
2. Fulv D [vV (uA Oulv))] by A9 and PR
3. F~w D [~ A (~uV O~w) by t, A4 and PR
4. F[ullv A ~w] D [~v A u A O(ullv) A O ~w| by 2, 3 and PR
5 F[ulv A ~w] D [O(ullv) A O~uw) by PR
6. F[ullv A ~w] O O(ullv A ~w) by T12 and PR
7. F[uly A ~w] D Oulv A ~w) by CI
8. F [ullv A ~w] DO ~v by 3 and PR
9. FO(ulUv A ~w) D O~v by OO
10. F [ullv A ~w] D ~Ov by 7,9, Al and PR
1. Fulv A ~w] D Ov by A10 and PR
12. Fulv D w by 10, 11 and PR

. |

The LUI rule, together with axiom A9, can be vicwed as a characterization of the ullv con-
struct as the minimal solution of the implication:

(#+) [vV(uAOz) 2=z

Axiomn A9 implies that £ = ullv is a solution of (xx). The LUI rule states that any other solution
of (++), £ = w, is implied by ulUv. This means that whenever ullv is true so is w, which is
interpretable in our ordering as wllv C w. Thus vUv is the minimal of all possible solutions.

Note that, (+x) possesses many solutions. [n particular z = true is a trivial solution. lowever,
the minimal solulion is unique and is given by ullw.

22

..A_!J_A.J_"_AJ

N I

S OO

P ‘!L'A"' ,

A

-

v AU o
« e N

A

S A4 as

T . S

:v~"~_' A R R AT A A AT S A AT IR OIS S R S R LM oot i S e C i Y T MR St Jne SR Bt Sudt Shett Sasl SEgr TR T Y
. P
¥ @,
fA UU Rules
.‘ Fu DO up Fu = ug
- (a) Fve 2w (b) Fov = v
FuUvy D uallve Fu Uy, = walvg
Proof of (a):
1. Fuy D ug given
2. Fuvy D v given
3. F [‘U2 A% (‘U.2 A O(UZU.’U‘;))] D uplve by A9
4, kv Vv (ur A OfuzUvz))] O ualwg by 1, 2, 3 and PR
5. Fu;Uv; D uallog by LUI

The proof of part (b) follows from (a) by propositional reasoning and the symmetric application

of (a). 1
This rule together with the OO, © ¢ and O O rules show that all the temporal operators -]
are monotonic in all their arguments. 3
.
»)
T23. + (~w)lw = Ow
Proof:
. F(~w)lw O3 Ow by At0
2. FOw D [wV OQu] by T21 and PR
: 3. FOw D [wV (~w A OQw) by PR
E 4. FOw D Ow by PT
i 5. F Ow D (~w)lw by 3, 4 and RUI
) 6. F(~w)lw = Ow by L, 5 and PR 3
[-1]

-
B/
P

T24. + (le A sz)) (wll.lwg)

Proof:

go "!“;_'4‘;4

}

;

[

3

}

F

‘,: .. F [le A 011!2] 3 Qug by PR
A 23

{

pd

- N

[-
!
:
L
tai

1
i
2. F[Ow A OQwy] 2 [(wi A OOwy) A (wg vV OO w,)) !
by PR, T20 and 21 :
) 3. F(Ow, A Qwy) D [wg V (wg A OOw; A O<>w2)] by PR .i
4. F(Ow, A Qwp) D [wz vV (wy A O(Qw, A OW2))]] by T12 and PR]
5 F[Ow; A Qwy] D wylwy by 1, 4 and RUI,
taking w to be Ow; A O we, u to be wy, and v to be wg-l .J‘

T25. + (wlll'wg)u‘wg = ’uMU’II)2

Proof:

l. F(w Uwg)Uwe D [we V w Uws] by A9 and PR

2. Fwz DO wilws by A9 and PR

3. F(wilwz)Uwy D wylUws by 1, 2 and PR

1. Fwlwy 2 Ows by A10

5. Fwlwy D {we V (wy A Ofw Ui))] by A9 and PR
3 6. FwUwy D [U12 V (wiUwy A O(wlllu)2))] by PR
3 7. Fw Uwy DO (wilwe)Uw, by 4, 6 and RUI
) 8. F(wUw)Uw, = wlUw, by 3, 7 and I’R-.I .J
g :
. T26. F wiUwy = wU(w Uws) 1
;e b
- Proof:]
y ;
':.,' L Fwz D willwe by A9 and PR
E- 2. FwiUwy 3 wilU{w Uws) by UU
F" 3. FwU(wUwy) D [wyUwe v [wy A O(w U(w; Uwe))]] by A9 and PR .';
Y. !

4. F wU(w; Uwy)

IJ

{we Vv [wi A O(w Uws)] Vv [wy A O(w U(w Uws))]}
by A9 and PR

r"; ‘
‘;. i 5. Fw UW(wUwy) O {wy Vv [wy A O(wyUwe Vw U(wUws))]} by TI3 and PR »
: 6. F [w Uws Vv wiU(w;Uws)] D wiU(wUwe) by 2 and 'R

- 24

Lo 3

o e T . m e T,y T e T e T T e T T, e T, B, R, R, oW e YL,y LYY TANLEYREOWRWER TR TOTYT TN VY YR YR WS T 4TWTR TR Ty T W W

LJ

1

7. }-wlll(wlu'w-z) D {w2 \Y, [wl A O(wlLl('wlu'u;g))]} ;

by 6 with OO, 5, and PR j’

8. Fw Ulw Uwy) > Ow,Uws) by A10 B

9. FwUws D Owy by ALO 1

10. F O(wUwy) O O Owy by & 4

1. FwUlwUws) > Ows by 8, 10, T4 and PR o

12, Fw U(wiUwe) O wiUws by 11, 7 and RUJ,
taking w to be wy U(w, Uws), v to be wy, and v to be we

15, Fwlws = wU(w) Uws) by 2, 12 and I’RJ ..J

2

E

1

U Insertion - Ul 1

F o Fu FOu y

(a) (b} —— »f

Fullv Fully]

for an arbitrary u

Proof: ‘

L/

(a) 1. ko given '

2. kv D ull by A9 and PR]

3. Fulv by 1, 2 and PR 1

(b) 1. Fu given -

2 FOvw given

3. FQOu by | and Ol »

4. F(Qu A Ov) O ullv by T24 ﬂ

5 Fullv by 2,3, 4 and I’R-l 4

ik

I A

U Concatenation UC .

. Fv 2 ullvg]

r.'- w

" F vy DO ullvy b

L! Tt T = .‘
-

‘.'_ F v, O ullvy]
:

MU e e e s |

- Proof: .
- '
] . 1. Fwv; D ully given .’i
. 2. ke 2 ullv, given !
3. Fulvy O ull(ulv;) by Ul !
4. kv D ul(ulvs) by 1,3 and PR J
®
5. kv D ulv; by T26 and PR i
- J
[
. T27. F [E]’ll)l A ’U)2U’U)3] o) (’IU] /\’Uz'z)u('llh /\1113)
Proof:

. Fw;Uwy O Owy by Al0

2. F[Ow, A wylwy) O (Ow; A Ows) by PR

3. F[Owy A wylwg] 2 Olwy A w;) by T1l and PR

1. Fwylwy D [wy v (we A O(wyUws))] by A9 and PR

5 F[Owy A wylws] 2 [(Owy A wg) v (Owy A we A O(ws Uwy))] by PR

6. F(Ow, A wy) D (w; A wj) by A% and PR

7. F{Ow; A we A O(walwy)] O [wy A wg A OOw; A O(wyUu 3}
by 120 and PR

8. F[Ow, A wy A O(welwy)] D [(wr A we) A O(Owy A wyllwy)]
by ‘112 and PR

Ak

ad

9. F [le A ngw;;] 3 {(’U)l A ‘UJ;;) \ [(wl A ‘LU2) A O(le A wz’le;,)]}
by 5, 6, 8 and PR

10. F [Owy; A wellws] O (wy Awg)U(wy A ws) by 3, 9 and I{U.l-'

NVCATIY - S

The next theorem displays the commutalion relation between the O and the U operators.

T28. F (Ow)U(Owsy) = O(w; Uw,) ;
1
Proof: |
£
FwlUwy = [wy v (wl A O(w.llwg))] by A9
26]
»
*
1
P P . L . T o P T ‘.

——————T

by T12, T13, O O and 'R
] 3. F[Ows Vv (Owy A OO(wilUw,))] D OfwiUws) by PR .f
-,_‘ 4. F(Ow)U(Owz) > Ofw;Uws) by LUI, taking w to be wy U, 5
5 Fw Uwy, D Owy by A10 i}
i 6. F O(wilwg) D OO ws by OO .1
- 7. F O(wiUwz) D O Quwy by T17 and PR]
F O(wiUwg) D {OQwy vV [Owy A OO(w; Uw,)|} by 2 and PR |
9. F O(w Uwz) O (Ow()U(Owy) by 7, 8 and RUI, —.“J
i] taking w Lo be O(w; Uwz), © to be Ow,, and v to be O wy A 4

b S s s S e L e 4

-

2. F O(w Uwy) = [OQwy V (Oml A OO(wIU.w;,))]

10. F (Qw)U(Owy) = O(wUwy) by 1, 9 and l’R,-l

.

Having classificd O as a universal operator, & as an existential operator and O as being both
universal and existentinsl, we observe that U is universal with respect o its first argument and

existential with respect Lo ils second argument. This yiclds the commutation properties listed in
T29 and T30.

.
A asd Al L&A.!AA’! I

T28. + (wi Awg)lwy = [w Uwz A wylUws)

Proof:

Ik (w A wg) D w by T .1
2 2. F (wy Awy)Uwy D wyUwy by UU : 1‘
E 3.k (wi Awg)Uwg D wolwg similarly ,i
. 4
.L'; 4. F (wy Awg)Uwg D [wilwy A wellws) by 2, 3 and PR 8
;". 5 FanlUw; O Ows by ALO :
f'.' 6. F [wyUwy A wylwy] D Owy by PR iR
,L'- 7. Fwlwy D {wy VvV [wi A OlwUws)} by A9 and PR L
¢ 8. Fuwolwy D {wy Vv [we A O(waUwy)]} by A9 and PR
: 9. F [wilUws A walwy] D {wy Vv [(wy A wg) A Olw Uwz A welwy)]}
4 by 7, 8 T12 and PR -
- @
o 10, F iy Uwy A welwy] D (wy Awy)Uwg by 6, 9 and RUI,
g taking w to be (w; Uwy) A (wgUwy), % Lo be wy Awy, and v Lo be wy

27

¥ L |
-
L L R . . — N - —— a4

Proof:

hg ”
16 SN
. e e e a

YL . 3y

. Proof:
E.‘.

n ,Ew-v v

s 11.

10.

I,
12.
13.
14.

15.

F (wy Awe)lUwy = [wlwg A welws) by 4, 10 and I’R-l
T30. + wiU(wyVw;) = [wUwy vV wlws]
Fwe D (we V w;3) by PT
Fwilwe DO wilU(ws Vv ws) by UU
Fw Uwy O wU(ws Vv w;) similarly
FlwiyUwe v wilws] D wyU(we V w;) by 2, 3 and PR

Fw UwyVaws) D {(wy v ws) V [wi A O(w U(we vV ws))]} by AY and PR

Flwe v (w; A O(w Uwy))] 2 wilw, by A9 and PR
F ~(wUwe) D {~wa A [~wi V O~(w Uwy)]} by A4 and PR
F ~(w Uws) O {~ws A [~w V O~(w Uws)]} similarly

F [wlU('wgv'w;;) /\N(IU|U’IU2) A N('U)|U'U)3)] 2

['\'U)z A ~wyg A wp A O(w,U(wg ng)) A O~(w|Uw2) A ON(U][U’U);})] '

by 5, 7, 8 and PR
F lwiU(we Vws) A ~(wUwe) A ~(wUws)] D

{~(wg VvV w3) A Ofw U({we Vwg) A ~(wilUwz) A ~(wUws)|}
by T12 and PR

F (wiW(wg Vws) A ~(w Uwy) A ~(wUws)] O O~(wz V wy) by DCI
o ’lU|U(’w2V w3) o 0(’11}2 \Y% ‘w;;) by A10
Fw WwsVws) O ~[~(wUws) A ~(wUws)] by 11, 12, Al and PR
FwyU(we Vws) O [wilwy V wUws] by PR
Fwi UW(we Vws) = [wilwe vV wyUwg] by 4, 14 and l’R-l

T31. k [Owl A" O’U)g] D [(N’U)])uwz \Y (ww-z)U.wI]

FOw vV Owy] D Olwy v wy) by T8 and PR

28

oL
PP O o

<

A

,!;A_‘ PR

4

2. F O(wy V wz) D (~(w Vwe))UwVws)

3. FO(wy V wy) D (~wy A~wy)U(wy V wg)

4. F O(wy V we) D [(~wy A ~wa)lw; V (~w A ~wg)Uws]
F (~wi A ~wg)Uw, D (~we)Uwy

F (~wi A ~wz)Uwe D (~wy)Uwe

F O(w; Vv w2) D [(~w,)llw2 \ (ng)u'w,]

® N =

+ (O'wl \ O'LUQ) D [(~w1)Uw2 \Y (~w2)U.w,]

by 123 and PR
by UL and PR
by T30 and PR
by UU and PR
by UU and PR
by 4, 5, 6 and PR

by 1, 7 and PR
g i

The following two theorems display the one way implication resulting from the interchange of

the W with a boolean operator of the opposite character.

T32. Fw U (w2 Awg) O [wiUwe A wiUws]
Proof:
1. F(wg A wg) D wy
2. Fu U wz Awy) D wiUws
3. FwU(we Awg) D wlw;

4. FuwU(wa Awg) D [wiUwe A wyUws)

T33. F |wUwz V wallws] O (w; vV we)Uw;
Proof:

. Fw D (wy V wy)

2. FuwlUwy O (w; Vuwy)Us

3. Fwy D (w V wy)

4. FwylUwy D (wy Vws)Us

5 F [wiUws V walwg] DO (wy Vwe)lws

T3, F (wy D wydlUwy O {wUwy O wyllws]

29

by PT
by UU and PR
similarly

by 2, 3 and PR
d J

by T
by UU
by PT
by UU

by 2, 4 and PR
d d

. W],

B, 4_;4;4_4';;4_‘;,! a_

[{ '
NPT VT

.
b d saK

PPOP R

4

N . SO

Proof:

F (wy D we)lwg O Ows by A10
F [(wl o] 'wz)uwg A wIUw;;] o)

{ws Vv [(wi 2 wy) A O(wy D w2)Uws) A wy A Ofw, Uwy)|}
by A9 and PR

F{(wi D wg)Uws A wlUws] D

{ws v [we A O((wy D wz)Uwz) A Ofw;Uws))} by PR

F [(w1 > wa)Uws A willws] D
{ws Vv [wg A O((wy D wa)Uws A wilws)]} by T12 and PR
F [(wy 2 w)Uwy A wilws] O waliwy by 1, 4 and RUI,
taking w to be ((wy D wy)Uws) A (wi Uws), u to be wy, and v Lo be wy
F(w) D w)Uwy O [wUws DO wallws] by I’R-l

T35 F [wilws A (~w2)Uws] O wlw;

Proof:

F (~w2)Uwz O Qwg by ALO
F lwiUwe A (~we)lUwz] O Ow; by PR
FwUwy D {we vV [w; A O(wiUws)|} by A9 and PR
F (~w2)Uws D {ws V [~wy A O((~wy)Uws)]} by A9 and 'R

F {wilwy A (~wg)Uws] O
{ws V [wg A ~wy A Ow Uws) A O((~ws)Uws)]} by 3, 4 and PR
F {wiUwe A (~wz)Uws] D
{ws v [wi A O(u Uwz A (~wy)Uws)]} by T12 and PR

Flw Uws A (~w2)Uwy] O wyUw; by 2, 6 and RUIJ

T36. F wilU(we Awy) D (w Uwz)Uws

Proof:

FwU(wy Awg) O O(wg A ws) by Al0

30

.

g

Aok od 2 4

N F.J |

-

- PO N

..

R R

»
.
[
b
P
.
-
»
'

LI & ARG

[~

[4]

© ®© N &

F(we A w3) DO wy by PT
F O(we A w3) D Owg by © ¢
FwU(wz Awz) O Owg by 1, 3 and PR

Faw U(wg Awg) D {(we A ws) V [wy A O(w Wwz Aws))]} by A9 and PR

F(we A w3) D ws by PT
Fw UW(we Awg) D wylUws by UU
Fw U(we Awg) D {ws V [wilwg A O(w U(ws A ws))]} by 5, 7 and PR
FowgU(we Aws) D (wUw,)Uws by 4, 8 and RUI

o

The following two theorems are referred Lo as “collapsing” theorems, since they may be used
to derive a conscquence of smaller nesting depth from a nested until expression.

T37.

Proof:

F (wilwa)Uws O (wi VvV we)Uws

1.
2.
3.

Fuwlwy D [we vV (wy A O(wlUwg))] by A9 and PR
FwUwy O (w, V we) by PR
F (wiUwe)Uws D (wy Vwe)Uws by UUJ

T38. F wyU(wglwy) D (wy Vwe)lws

Proof:

Fw U(wzUwg) D O(wglws) by A0
Fw,Uws O Ow;g by A0
F oy U(weUwg) O Owsy by 1, 2 and OC
F o U(weUws) D {wellws v [wr A OfwU(wzUws))]} by A9 and PR

Foaw,WweUws) D {wy vV [we A OlwyUwg)] vV [wy A O(wIU(wzu");;))]}
by A9 and PR

F wyUwy D wyU(weUws) by A9 and PR
F [y A OwUwy)] D [(wy v) A O (w U(wzUws))] by OO and PR

3l

bancbenadcmd

e,

TR m——————— ey -yt v s R T ¥ T e T R —————————~ g ——

8. F[w A O('H).U.(w-zl,im;,))] D [(wy vV we) A O(w,U(wQUm;,))] by PR

9. Fw W wlUws) 2 {wy V [(wy Vws) /\O(wlLL(wQUw;,))]}
by 5, 7, 8 and PR

10. F wiUlwUws) D (w; Vwe)lw; by 3, 9, and RUIJ

A very useful derived operalor is the unless operator u 8l v being defined by

vilv = [Ou Vv (ulv)].

The unless operator does not insist on the fact that » actually happens but it requires thatl u
holds until such an occurrence. If v never happens u must hold forever. This operator is related
to the binary “as long as” operator pOg, reading “g as long as p,” introduced by Lamport in [1.2].
The meaning of this construct is that ¢ holds continuously as long as p is continuously maintained.
We may express pOgq by:

p0q = qU(~p)

FFollowing is a rule for establishing the unless operator.

Unless Introduction -- I
Fu > Ou v v)

Fu D (uilv)

Proof:
I. +u D Ou Vv v) given
2. Fu D [OuvVv Ov by T13
3. F~(ulv) O {~v A [~u vV O~(ulv)]} by A9, T4 and PR
4. F O~(ullv) D O~v by OO and PR
5. Flu A ~(ulv)] D [u A O~(ulv) by 3 and PR
6. Flu A ~ulUv)] O [u A O~ulv) A ~Ov by 4, 5, A1 and 'R
7. Flu A ~ulv)] D [u A Ou A O~(ullv) by 2, 6 and PR
. 8. FluA ~ulv)] O [uA Ofu A ~(xlUv))) by T7 and PR
. 9. Fiu A ~(ulv)] > Ou by DCI
10. Fu 2 (Ouv (slv)) by PR

S

el & 4

‘ ,
PRI -4 ST T ‘AA'LJM "

e .
. [.
LY - PPN r

|

REMMEE * A

f‘TY \'V\“'{.-‘ ‘-‘.' o 7" DA AL

e

IR £

S W Tw 5 BoreE v ' R

I, Fu D (utlv) by delinition of 4

ol

This conclides the deseription of the propositional section of general temporal logiec. The
axiomaltic system presented for this seetion of the logic is known Lo be complete, and the validity
problem decidable ([I'S]). Consequently, there exists a procedure that tests cach formulain PTILL
(Propositional Temporal Logic) Tor validity, and constructs a proof in the presented system if the
statement is valid. The procedure given in [’S] takes exponential time in the size ol the tested
formula.

4. QUANTIFIERS

Since we intend Lo use terms and predicales in our reasoning we have to extend our system Lo
admit individual variables, terms and quantification. Let us consider additional axioms involving
quantifiers and their interaction with the tetmporal operators.

AXIOMS:

Atl. + ~lz.w = Ve.~w

A2, F (Ve (z)) D w(t)
where ¢ is any term globally free for z in w

Al3. F (Ve.Ow) D (OVaz.w)

In these axioms, z is any global individual variable. Axioms ALl and A12 are the usual
predicate ealeulus axioms: A1l delines o as Lhe dual of V and A12 is the instentiation aziom.
Axiom AL is the Barcan formula for the O operator; it stales that since both operators V and O
have universal characterislics they commute. We use Lhe substitution notation w(x) replaced by
w(t) 1o denote the substitation of the terin ¢ for all free oceurrences ol in w.

A term tis said Lo be globally free for © tn w il substitution of £ for all free oceurrences of

2 in w: (a) does not ereate new bound occurrences of (global) variables, and (b) does not create
new occurrences of loeal variables in the scope of a temporal operator. A Lrivial case: if tis z
itsell, then £is free for £ Condition (a) is the one stipulated in elassical predicate logic. Condition
(b) is special to modal and temporal logies with quantification. Condition (b) is essential for A12,
beeause without it we could derive the formula

(Vr. Oz <y)) > Oy <),

which is nol valid Tor a local variable y.

An additionad rule of inference is:

33

INFERENCE RULE:

S — —

{-a - R4. V Insertion - VI
Fu D w

Fu 2 Vzo
where z is not free in u.

= DERIVED RULES AND THEOREMS:
-
\ I'rom R4 we can obtain the derived rule

L. Ivﬂzstant_;';tion Rule INST
F w(z)
F(t)
LF_" where ¢ is any Lerm globally free for z in w.
A Proof:
] .+ w(z) given
2. F Vru(z) by VI (Laking « to be (rue)
3.k (Vraw(z)) D w(t) by A12
4. F w(t) by 2, 3 and MP

|

The lollowing arce the duals of A12 and R4 for Lhe existential quanlifier 3:

T39. Fw(t) O Hew(z)
where ¢ is any term globally free for = in w.
Proof:
Ik (Vz.~w(z)) 2 ~w(t) by A12
2. F (~3raw(c)) O ~uw(t) by All and PR
- 3. Fw(t) o Jza(z) by PR

ol

E‘! y Note again that we need here the additional condilion (b) ensuring that the substitution of ¢
for in w does nol, creale new oceurrences of local variables in Lhe scope of a modal operator.

31

.

]
-

(
'.1

t

« A & e ti_m_e_s_s

3 Insertion Bl |
Fu 2w

F 3zuw D v
where £ is not free in v

Proof:
I. FuDw given
2. F~v D ~u by PR
3. F~v D Vr.~u by VI
1. + ~v D ~Fr.u by A1l and PR
5 Fdzou D w by PR
Y
YW Rules
Fu 2w Fu = v
3 e () -
Vzoau D Viw t Vru = Vv
Proof of (a):

I. FVeu D u
2. FuDOw
3. FVzau D v

4. FVzu D Vo

Rule (b) then follows by propositional reasoning. d

by AI2
given

by PR

by VI, since Va.u conlains no frec occurrences of .

33 Rules
FuD>w

a ————

- (b)
F dzu D drow

Proof of (a):
. FuDw
2. F(~v) D (~u)
3. F(Vr.~w) D (Vo.~u)
4. F(~Tzw) O (~z.a)

Fu =

F dzauw = e

given
by PR
by W

by At and PR

P SO S p adh

s

A POFSIP4 SN

. -
PP

2 2 B® L Caixa‘alac sk

St AW el e e

- T —————— A . S ———, T e e me———— P e S

5 bk 3Jzu D Iz) by PR

Rule (b) then follows by propositional reasoning.

I'rom the axiom Al,
F~Qw = O~w,
we can clearly deduce the formula
Frw v Ow) = ~(w V~Ow)
by propositional reasoning (PR). Ilowever, we cannot deduce by PR the formula
OD0~w = O~%w
or
Ve.O~w = Vz.~ Qw.
Here, the replacement of O~w by ~ O w is under Lhe scope of the operator [and the quantificr

Vz, respectively, and thus cannot be justiiied by proposilional reasoning alone. FFor this reason we
need the following equivalence rule.

Equivalence Rule — ER
Let w’ be the result of replacing an occurrence of a subfor-
mula vy in w by va. Then
v = vy

Fw = w

Proof:

By induction on the structure of w.
Case: wisvy. Then w' is vp and F v, = vy implics - w = w'.

Case: w is of the forin ~u. We assume that F v; = vy implies F u = «’. Then by propositional
reasoning F ~u = ~u/, i.e., F w = w'.

Case: w is of the form uy Vug. We assume that if - v; = vp, then b uy = u} and F ug = uj.
Then by propositional reasoning & (uy V ug) = (u] Vuy), ie., Fw=w'.

The cases where w is of forms ug A up, uy D ug, cte. are similar.

Case: w is of the form Ou. We assume that il F vy = vg, then F u = u'. By the O0-rule,

FOu= 04, ie, Fw=w'.

36

o

i

PPt

E
.
I
j

_e

e a_a e

!

AAAJ.! e amala s hal

&L

L an o

adl ad LY T T T LY T T T T T e e T T v eTm ey W W Ow T AT T e e m T e R E

The cases in which w is of forms O u, Owu, and u,;Uuy are trealed similarly, using the O O-
rule, the O O-rule, and the Ul-rule, respectively.

Case: w is of the form Vz.u. We assume that if F vy = vy, then b v = u'. Then by the VW-rule,
FVzuz=Ved, e, Fw=w.

The case where w is of form Jz.u is proved similarly by the 33-rule.

- |

Deduction Rule --- DED

w, F ws

F (le) D wy

where the VI rule (Rule R4) is never applied to a [ree variable
of w, in the derivation of wy b wq.

That is, if unaer the assumption w, we can derive F wy, where rule R4 is never applied Lo a frec
variable of w;, then there exists a proof establishing F (Ow;) D we. We clearly musl also be
careful in using any theorem or derived rule such as the VW or ER rule that was established using
vhe V1 rule.

The additional O operator in the conclusion is obviously necessary since in general wy b wy
does not imply F w; D wy. For example, obviously w Ow is true (an itnmediate application of
rule R3: F w by assumption and therefore F Ow by Ol); but w D Ow is not a theorem.

Proof:

The prool of the temporal Deduction Rule follows the same arguments used in the proof of
the classical deduction theorem of Predicate Caleulus. By the given wy F wg, there exists a proof
of the form:

l—ul
""ll.z

F Uy,

such that u, = w is the hypolhesis on which the proof relies, and u,, = wy is the consequence of
the proof. We replace each line b u; in Lthe prool of wy F wy by the line b Ow,; D u;, and show
that this transformation preserves soundness. That is

given show
Fouy F (Dw;) D uy
F uy F(Owy) O uy

37

Y T T T S v N N T Y S T P -

lale AJ! Aeaa ad

An

Aaa

- . Y Y % T W TR,y T, W TR TN e T T T e, R W e R R T RTTRE T T e T e TR T T e e T e e

b oy, - (le) D Uy

[I F(Qwy) O um
t.e., F wg e (Owy) O we

where each u, is cither the assumption wy, an axiom, or derived fromn previous u;’s by some rule
of inference.

The proof is by a complele induction on 3. We assume that for all £ < ¢, F (Ow;) D uy,
and prove that + (Qw;) D u,.

Case: u; is an axiom.

1. F oy axiom

2. F(OQw) D> w by PR
Note that F w’ implies F w D w' for any w, by proposilional rcasoning.
Case: u; is wy.

1. F (le) 2wy by A3

Case: u; is obtained by rule R1, i.c., u; is an instance of a tautology.

1 ko by PT
2. F (le) D uy by PR

Case: u; is obtained by rule R2 (using previous F ug and F ux D u;).

3 1. F(Owy) D ux induction hypothesis
{,

) 2. F(Dw) D (ux O w) induction hypothesis
) 3. F (Dw.) J oy by 1, 2 and PR
E j Case: u; is obtained by rule R3 (using previous F uy), i.e., u; is Oug.

&)

[- . F(Ow) D u, induction hypothesis
3

o 2. F(O0w;) D Ous by (103
2 3. F(Dw) > OOw, by T3 and PR

. -
2 4. F (Ow) > Oug by 2, 3 and PR
38

PR VR SNy I S SO SRR S S S S

Case: wu, is obtained by rule R4 {using previous F « D v, i.e. ug, Lo get b u D V.o, i.e. u,, where
z is not free in u).

By our deduction rule assumption, we know that z is also not frec in wy.

t. F(Qw) 2 (v D v) induction hypothesis
2. F((Ow) Au) Dw by PR

3. F((Dw) A u) D Vzw by R4

(since z is not frec in u or w,)

4. F(Qw,) D (v DVz.v) by PR 1

A different approach to coping with the application of the O insertion rule (rule R3) is to
forbid it altogether. We then get the following restricted deduction rule:

Restricted Deduction Rule -- RDIED
wy + We
Fwy D wg

where Ol (rule R3) is never applied and VI (rule R4) is never
applied Lo a free variable of wy in the derivation ol wy F wy.

fere, we are nol allowed to use rule Ol or any theorem or derived rule in whose proof O was
used.

The proof of RDED lollows exactly that of DIED except that the casc in which rule R3 is
applied does not arise.

QUANTIFIER THEOREMS:

T40. F (~Vz.w) = (Jz. ~w)
Proof:

. F(~~w)=w by T
2. F(Vz.~~w) = Vzuw by W
3. F(~Jdz.~w) = Vaw by All and PR
A, F ~Vraw = dz.~w by PR

YA

39

-
Aa o & ¢ M A a

PR Vo

ot

2] .

94

~ a a4 "4 e

A I At - Jaae et

T4l. bk Vz(wy A wg) = (Yew, A Vzowg)
Proof:

1. +Vzaw, D w
2. FVzwy D wy
3. F(Yzawy A Vzawg) 3 (w; A wg)

4. F (Vz.wy A Vzawg) D Vz.(w; A ws)

5 F (wl A 'lllg) 2wy
F Vz.(w, A wg) O Vz.un
F(wy A wg) D we

FVz.(wy A we) D Vzaw,

© ® N @

FVz(w; A we) O (Vz.owy A Vzws)

10. F Vz.(wir A wy) = (Vo.w, A Vz.wg)

T42. F B:v.(wl \") w2) = (B;C.U)l \" 3:5.11)2)

Proof:

1. FVz(~w A ~wg) = (Vz.~w A Vz. ~ws)

2. FVz.~(w V w) = (Vo.~wi A Vz.~wy)

3. F~Az(wy V wp) = (~Izaw; A ~3zawg)

4. F 3z (wy V we) = (3zaw, V Jz.aws)
T43. FVz(wy vV wy) = [w V Vz.we] where z is not frec in wy.
Proof:

. EVz(w V wg) D [w V wyl

2. F[Vr(w V w) A ~wy) D owy

40

a o a . a .

by Al2

by A12

by 1, 2 and PR
by VI

by PT
by WV
by PT
by W
by 6, 8 and PR

by 4, 9 and I’R-I

by T41
by ER
by A1l and PR

by PR

by Al12
by PR

&

Py SUA X

-i

PSS Y

A h i b b oh

R

oy

B I e e
‘-

-

R A A DA L)
d T T A AR

W BTN T T VT e R TR T e o el TR T

3. F [Vz.(wy V w2) A ~wy] D Vz.w,

4. FVr(w; V wg) D [wy V Vz.wg

5 Fw; D [w V wy

6. F Vziws D we

7. FVzawg D [wy V ws

8. F [wy V Vz.uwe] D [wy V wg]

9. F |wy V Vzwg] O Vz.fw; V wp)

10. FVz.(w; V wg) = [wy V Vz.we]

by VI,
since z is not free in V.(w, V wy) A ~w,

by PR

by T
by Al2
by PR
by 5, 7 and 'R

by VI,
sintee z is not free in wy vV Vr.w,y

by 4, 9 and PR-I

T, F3z(wy A wp) = [wy A Jz.wy] where z is not free in w,

Proof: By duality on the previous theorem.

The following two theorems show thal the O operator also commutes with Lthe quantifiers,

T45. F (V2.Ow) = (OVz.w)
Proof:

I. F(Vz.Ow) > (OVz.w)

2. FVzow D w
3. F(OVzaw) 2 Ow
4. F (OVz.w) O (Vz.Ow)

(2]

F (V2. Ow) = (OVz.w)

T46. F (J2.Ow) = (O 3z.w)
Proof:
I. F(V£.0~w) = (OVz.~w)

11

by A13

by Al2
by OO
by VI

by 1, 4 and l’lt-'

by T45

..., 4

.,

—r

PP S

) f""" R

: T47. F (Vz.Ow) = (OVz.w)
E] Proof:
:’ L. FOw D [w A OOuw)
3 2. F(Vz.Ow) 5 Vr.(w A OOw)
s 3. F(Vz.Ow) > [(Vz.w) A (Ve. O Ow)]
F 4 F(Yz.Ow) > [(Vz.w) A (OVz.Ow)]
5. F (Vz.Ow) o (OVz.w)
! 6. F(Vz.w) O w

7. +(OVzw) D Ow

8. +(OVzw) 5 (Ve.Ow)

9. +(Vz.Ow) = (OVz.w)

T48. F (3.0 w) = (O Izw)

o Proof:
\ 1. F(Vz.O~w) = (OVz. ~ w)
- 2. F(Vz.~Ow) = (O~3zw)
! 3. F(~32.0w) = (~O 3z.w)

4. F(Iz.0w) = (O Jz.w)

F (Vz.~ Ow) = (O~3z.w)
+ (~32.0w) = (~OIz.w)
F (32z.0w) = (O3Iz.w)

T T T———_——

by A4, All and ER
by A4, All and PR

by PR
Yyt

The following two theorems show that cach temporal operator commutes with the quantifier
that has similar character (universal, or existential).

by T20 and PR

by VYV
by T4l and PR
by T45 and PR

by DCI, taking u to be Vz. Qw and v to be Vie.w

by Al2
by OO
by Vi

by 5, 8 and I’R-l

by T47
by A1, A1l and ER (twice)
by Al, All and PR

by PR

Theorem T47 implies the commutativity of V with 0: Both have a universal character, with
one quantilying over individuals and the other quantifying over states. Similarly, theorem T48

T g

‘

.

L]
o
0.
]

§. S .

PR

'
bk s

Proof:

M "'F V—'-.,..,r.,-.,-,rfwl.j_v“ﬂ— r-. ——
. . . . I 1] ‘. . ‘.A B -l‘ . . 'v. :

Eol

FwlUwy O [wg
o Vz.(wlll'wz) o
F Vz.(w Uwy) D

T49. F Vz.(w Uwp) = (Vz.w)Uwe where z is not free in we

vV (wy A O(wi Uwg))]
Vz.fwe vV (wy A O(wUws))]
[u}z vV V:c.(wl A O('wluw?-))]

implies the commutativity of 3 with ©. The first two theorems (''15 and T46) imply the commu-
tativity of V and 3 with O.

The next two theorems are consistent with the interpretation that the U operatlor is universal
with respect to its first argument and cexistential with respecl Lo the second.

by A9 and PR
by W
by VI and PR,

since z is not free in wq

E-. 4. F Ve (wlUwz) O |wy Vv (Vx.w. A Y. O(wlu-wg))] by T41 and PR
[,:' 5 kVr(wUwg) O [wz V (Vz.un A OVz.(wUws))] by T45 and PR
o 6. F Va(w Uws) D Owy by A12, A10 and 'R ;
7. FVz(w Uws) O (Vr.w)Uwe by 5, 6 and RUI, i
taking w Lo be Vz.{wUwy), v to be Vz.wy, and v to be w, 'i
8. F (Vz.wy) D wy by Al2
9. F (Ve.w)Uwz D w Uwe by UU _
10. F (Vzaw)Uwe D Vz.(w Uwg) . . by VI, .;
since z is nol [ree in wy 1
1. FVz(w Uwy) = (Vo.w)Uw, by 7. 10 and I‘I{-l ;
»
T50. F 3z.(w;Uwy) = w U(3z.w;) where z is not free in wy ‘
Proof: :
. FwlUwy O Owy by A0 L}
[2. Fdz(wUwe) O (32. O we) by 33
E 3. F Iz (wiUwsz) O (O Jzwg) by T48 and PR ‘
E! 4. FwlUwy D [wy v (wy A O(w; Uwy))] by A9 and PR !j
" 5. F dz(w Uwy) D [(rawy) v x.(wy A OfwyUmwy))] by T42, 1] and 'R ’
o .
L-——-—-ru intninadeaniinbodeantondh A Anadueands - —— P

;;,'....-

L‘.
P iy
- 6. F 3z (wUws) DO [(3z.we) Vv (wy A Ju. O(w Uwe))] by 114 and PR, :
: N since z is not free in wy ;
{—d i 7. F 3z (wUwg) D {(Fz.wz) V [wy A O3Iz.(w Uws)]} by T16 and PR o
;: . 8. F Jz.(wiUwy) DO wU(Iz.w2) by 3, 7, RUIl and PR '
r 9. FlwyV (wl A O(wlllwz))] D w Uws by A9 and PR _4
n 10. F 3zfwe vV (wy A O(wUws))] O Ju.(w Uws) by 33 o
1.+ {(Bzwe) V 31.(w1 A O(w Uwy))] D Fz.(w;Uw,) by T42 and PR '
12. F [Bzawg) v (wi A 3z.O(w Uwy))] O 3z.(w; Uwy) by T44 and PR, .
1 since z is not free in wy -
)
13. F [(3zwg) v (wi A OIz.(wUwy))] D Jr.(wUws) by T46 and PR ‘
M. FwU(Fzawy) O Jz.(w Uwy) by LUI, :
- taking u to be wy, v to be 3z.wy and w to be Jz.(w) Uws) ;
E‘ 15. F 3z (w Uwy) = wU(Tz.w,) by 8, 14 and [’R-l .i
- 1
: While operators of similar character, i.c., both universal or bolh existential, commute to yield
cquivalent formulas, operators of opposite characler usually admit implication in one direction
only. Thus we have:
Ts51l. F Je.Ow D Odz.w
T52. F OVzow D Vz.Qw
T53(a). F Jz(wiUws) O (3z.w)Uws where z is not free in we -
(b). Fw U(Vz.wz) D Vz.(wiUwz) where z is not free in wy : :
R
L J
o Theorems of similar character are:
T64(a). b+ Jz(ulv) O (Fra)U(Ic.v) :
. (b). F (Vr.)U(Vz.w) 5 Vz.(ulv) .
& "
THE NEXT OPERATOR APPLIED TO TERMS:]
q 04
The use of Lhe next operalor O applied Lo terms is governed by Lhe axioms:]
]
41

FEeS TFT T T T M. A L L e

Ald. = Of(ty, ..., ta) = f(Oty, ...,0t,)

for any lunetion f and terms ¢y, ..., ¢,

Al5. F Op(ts, ... ta) = p(Oty, ..., Otn)

for any predicate p and terms ¢y, ..., ¢,

These axioms are consistent with the evaluation rules that we gave which stated that in
order to evaluate an expression O €(ty, ..., t,), we can evaluate £(Oty, ...,0O¢t,) whether € is a
function or a predicate.

5. EQUALITY

Squality is handled by the following axioms:

AXIOMS:

A16. Reflezivity of Equality
Ft=1t T[or any term ¢
Al7. Substitutivity of Equality

o (tl = tz) D [’ll)(tl,t]) = ‘w(tl,lg)]
where tg is any term globally free for ¢ in w
and where w does not contain temporal operators

Al8. O(t| =tg) = (Otl = Otz)

We use w(ty, ty) to indicate that £y replaces some ol the occurrences of ¢y in w.
The axiom Al8 is a special case of Al when the predicate p is the equality predicate.

Reeall that a term ¢y is said to be globally free for t; in w if substitutlion of ¢z for all free
occurrences of ¢y in w: (a) does not, create new bound occurrences of (global) variables, (i.c., t3 is
free for t in w), and (b) does not ereate new occurrences of local variables in the scope of a modal
operalor.

Nole that the classical axiom lor substitulivily ol equality A17
Bt =t2) D [w(t,,t)) = wlty,ts)]

(where tg is free for ¢ in w) is not correct if w contains Lemporal operators. We could take w(t,)
to be O(ty = tg) and deduce from AL7

- (tl == tz)) [D(h = t|) D(tl = tg)],

45

Adbine Ao oon

TOY W S DVS R FUDT Y vy W ar IR P N TIRR)

Aedod A A L me a0 2 4. 4.4 o

WS g e

i.e.,
of (tl = tg) 2 D(tl = tg),

which is not a valid statement (since) = t2 may contain local variables).

T55. Commutativity of Equality

(] (tl = t2) 2 (t'z = tl)

Proof:
. F (tl = tg) 2 [(h = tl) = (tg = t|)] by At7
2. Fiti=1t by Al6
3. F (tl =t3) D (tz =) by 1, 2 and I’RJ

T56. Transitivity of Equality
+ [(tl = tz) A (tz = t3)] o) (tl = t3)
Proof:
1. F (t[= tg) 2 [(h = t3) = (t-z = tg)] by AI7
2. F [(tl = tg) A (tz = t;;)]] (tl = t;;) by PR

T97. Term Equality

(a) F Ot =t3) D [r(ts, t1) = 7(t1, t2)) for any term 7
(b) ¥ (tr=ts) D [r(ts,t1) = 7(t1,t2))

provided 7 does not contain the next operator.

Proof of (a):

By induclion on the structure of 7.
Case: 7(t),t1) =1t and 7(t(,t2) =¢;. Then

1. Fli=14 by Al6

2. - D(tl == tg)] [T(tl,t|) = T(tl,tg)l
by PR and definition of 7(¢y,;) and 7(¢y, t2)

46

-.LA'““ ey .L(_‘.'_l s

.4

N SRR

P

v
-
.LAAA

Case: 7(ty,t1) =t and 7(t;,t2) = t2. Then

AR e e

1. F D(tl = tg) 5] (tl = t-g) by A3 .

f

2. F D(tl = tz) D [T(tl,tl) = T(h,l«g)l 4

by the delinition of 7(¢(,¢;) and 7(¢,t2) -

¥

}

Case: T(tl,tl)——:f(ﬁ(tl,tl), ...,Tk(t|,t|)) and T(tl,tz)zf(’f](tl,tz), ...,Tk(tl,tz)). Then ;.<

1

1. i‘D(t[ztz) o] [Ti(tl,tl):ﬂ(tl,tg)], fori:l,...,k 3
by the induction assumption.

k 3

2. /\ [mi(t1, t1) = m(t, t2)] D]

[F(mi(t,t), omeltn 01) = F(mltr te), oo 7t t2))]
by repeated application of A17 and using T56 for transitivity of equality.
A typical step in Lhis repeated application is:
B [r(t, 61) = (b, t2)] D
[f(‘fl(tl,t'z), vy ooaltn t2), Tt t), oo, (b, b)) =

St t), ooy gt ta), mltn ta), Tt 1), ooy (b, 1))

caaas an'a g Aii

&

justifiecd by AL7 and the fact that 7;(tr, t2) is free for (¢, £1) in f(...) since f does not contain any
temporal operators.

3. FD(t[—"—“tz) D) [T(tl,t|)=T(t|,tz)]
by 1, 2, PR and the definition of 7(t, t;) and 7(¢y, t2).

Case: 7(ti,t1) = O7'(t1,t1) and 7(t1,t2) = O7'(¢y,t2). 'Then

L. F O =t) D [7'(t,t1) = 7'(t1, 82)] by the induction hypothesis

2. F OOt =t} D Of'(ty, t1) = T'(t1, ta)] by OO

3. F Oty t)) = 1'(ty,t)] D [O7'(ty, t1) = O7'(t1, t2)] by A18 and PR

4 KOt =t) > OOt = ta) by A7

5. kOt =ty) 2 (O'(t1,t)) = O7'(ty, t)) by 4, 2, 3 and IR .1
g 6. F Ot =t2) D [r(t,) = 7(t, t2)) by the definition of 7(ty, 1), 7(¢1,t2). ;
E Proof of (b):
E!:‘ Lok (t=t) 2 [(r(t) = 1(t2)) = (1(t2) = 7(t2))) by A17 (no O in 1) . :,j

2. F(ty) =71(t) by AL6

MM ¢+ s et aee

e

T U U N N VU S AT R,

"y A4 W ¥ _wr s e v rw e oW % Te Yegwws -~ T — U7 /s 727y 2 wWrTRem RN T e e Wy Y N RS AR R e R e o ROT

3. k(i =t3) D (r(tr) = 7(t2)) , by 1, 2 and I'R

|
The following theorem generalizes At7 to arbitrary formulas.)
T68. Substitutivity of Equality '.J
1
F O =t2) D [wlty, ti) = w(th,t2)] where tg is free for ¢ in w. 4
Proof: i
N .
By induction on the structure of w. [}
B
A
Case: w contains no temporal operators. Then .)
.
1. F (tl = tz) D ['w(tl,tl) = ’w(tl,tg)] by A17)
K
2. F D(tl = t2) D (t| = tz) by A3 .*
3. o D(tl = t2) D [w(tl,tl) = '!l)(t],tz)] by mMp 1
9
Case: w(ty,ty) is of the form 7y(¢y, ty) = 79(t1,¢2). Then 3
»
L. + D(tl = tg) 2 [Tl(tl,tl) = Tl(tl,tg)] by T57 .

2. DOt =t2) D [rafty, t1) = 72(ts, t2)] by T57

3. Fn(t,t)=mnltnt)] 2 [(nltnt) =n(tn,t) = (1t te) = r(t, t1))]

by A7 of the f~rrm (01 = 02) D [(0] == Tg(t],tl)) = (02 = Tz(tht]))]
with 0 = 7((¢;,¢1) and 02 = 7,(¢1, t2)

4, [D(tl = tz)) [(Tl(tl;tl) = Tg(tl,tl)) = (Tl(tl,tz) = Tz(tl,tl))]
by 1, 3 and PR

(m1(tr,ta) = 72(ts, t2)))
similarly by A17, using 2

(ri(ty,t2) = 7a(t1, t2))]
by 1, 5 and PR

5. F Ot = t2) D [(ri(ts,te) = malts, 1))

il

6. F Ot =t) D [(ri(ti,ts) = mats, t1))

1

7. FO@ =t2) O [w(ty,t) = wlt, b)) by the definition of w(ty, t2)
. Case: w is of the form Ou. Then
;:. . Lo ROt =t) D [u(ti,ty) = u(ty,t2)] induction hypothesis
. 2. F Ot =t) assumplion
:_.
= 48
* .
ke

'[:-?—'f'-.‘vf'* GO DR R DR S = T ﬂ
P:‘ ‘ 1
t;-i:l .
ﬁ’]
3. + ‘lL(tl,tl) = ‘lt,(tl,tg) by MI? 3
1. F Oulty, ty) = Oulty,ts) by OO :

!
:

ThUS, D(t[= tg) F [Du(tl,tl) = D’u(tl,t2)]
5. F DD(tl = t2) D [Du(tl,h) = D’U(tl,tz)] by DED
6. F O(ty =t2) D [Oulty, t1) = Dufty,ts) by T3 and PR

~
il
[l

R "rd SR
A o ‘.
AP .

The cases in which w is of the forin O u, Ou, Vz.u and Iz.u are treated similarly, using the
O O-rule, the O O-rule, the YW-rule and the 33-rule, respectively.

Case: w is of the form ulv.

Pt e h AR S A A gmafin i Al N e,
. . R . R)
KN . r S ‘o Y . S
. L. Lt R o o

1. kO =te) D [ult,t1) = ulty, ts)] induction hypothesis
2. F Ot =t2) D [v(te,t) = v(tr, b)) induction hypothesis
3. F0O(t =tg) assumpltion
4. Fou(ty,t)) = u(ty,t2) by 1, 3 and MP
5. F vt t) = vty t2) by 2, 3 and MP
6. F (u(ts,t)Un(tr,t1)) = (ults, t2)Uv(ty, ta)) by 4, 5 and ER)
Thus, O(t = t2) F [(u(ty, t)Uv(t, t1)) = (ulbr, t2)Uv(ty, t2))] 1
7.+ 00 =t) D [(ults, t)Uv(tr, t1) = (ufty, t2)Uo(ty, t2))] by DED 1

8. FO(t =t2) D ((ultr,t)Uv(tr, t1)) = (ults, t2)Uv(ty, t2))]

by T3 and PR
Y d

6. FRAME AXIOMS AND RULES

I SRR JNPRA

In this section we consider Lthe consequences of the partition of the set of all variables into
local and global variables. By the semantic definition, global variables are given their value by the
global assignment e, and these values do not, vary from stale to state. Consequently, for a global
variable « it must be universally true thal u = Ouw, i.e., the value of u at any state is identical
to its value in the next state (sce A19 below). The following axioms arc called frame azioms in
reference to the “frame axiom” in [loare’s deductive system for program verilication ([ILL}).

PO W Y. S

Amad

Recall that we split the sl of our symbols into Lwo subsets: global and local symbols. The
logical consequence of this convention is the following frame axiom:

A19. Frame Aziom

V-4

= Oux for every global variable z

19

———a X

P S YT " P - < L. Py Y S .

YT

Y

Ot J

DR) A/ aing

© .

b

Lt DA
6 A0S

We can therefore prove by induclion on the structure of the term ¢ and the formula w the

following frame theorems:
T59. TI'or a term ¢ and formula w

(a) Ft=0t

where ¢ is global, i.c., does not contain local symbols

(b) Fw = Ow

where w is global, i.c., docs not, contain local symbols.

(¢) Fw(Oyy,..

where yyq, ..

»0yn) = Owly, ...,yn)
., Yn are all the local variables in w.

We present several frame theorems that facilitate moving global formulas in and out of the

scope of temporal operators.

T60. F O(w; V wa) = (wy; V Owy)
where w is global, i.e., conlains no local symbols.

Proof:

i. Fe~w, 2 O~w

2. F[Ow; vV wz) A O~wg} D Of(wy V wg) A ~wy)

3. F[(wi V wg) A ~wy] DO we

4. F [O@wy V we) A O~w] D Ow,

5. F [O(wy V w2) A ~wy] O Ou,

6. +O{w; VvV wz) O (w; vV Owy)

7. Fwy 2 Ow

8. F(wi VvV Owp) D (Qw, V Owy)

9. F(Ow; vV Owg) D Ow; V wp)

10. F(w; v Owse) O O(wy V we)

1. FO(w V w) = (wy V Owy)
T61. F O(wy A wg) = (wy A Owy) where wy is global.

Proof: The proof lollows from T60 by duality,

50

PP N W WA 1P P N DI O PP

by T59b

by T7 and PR

by PT

by 2, 3, 30 and PR
by 1, 4 and PR

by PR

by T59b

by PR

by T9

by 8, 9 and PR

by 6, 10 and l’R-l

PRI SP LIPS U W WU S YL S WO S S S O -

L
A‘L‘L._._;

A b o At s a o

2, .

‘.A“'.‘

il

T——— TTT—" TR ———

A derived frame rule that we will be using is

Frame Rule — FR
Fud Ow

F(w A u) D Ow A v)
where w is global

Proof:
1. Fu2 Ow given
2. FwAu) D (wA O by PR
3. Flw A Ov) D Ow A v by T61 and PR
4. F(w A u) D O(w A) by 2, 3 and PR-I
o
et
-
"~
f.-
-
-
1
51
-
. 4

LI PN UV P

Y P ey BUTY ..‘A.A..'!‘L-A.L‘

it o oA

e -N--A

@

»

S w T e T T T T TR W T T W e T e e, W Ty T T e T T W W R T W T W T w e e

C. DOMAIN PART

The next part of the system conlains domain axioms that specily the necessary propertics
of the domain of interest. Thus, to reason aboul programs manipulating natural numbers, we
need the set of Peano Axioms, and Lo reason about trees we need a set of axioms giving the basic
properties of trces and the basic operations defined on them.

7. INDUCTION AXIOMS AND RULES

An essential axiom schema for many domains is the induction aziom schema. This (and
all other schemas) should be formulated to admit temporal instances as subformulas. Thus the
induction principle lor natural numbers can be stated as follows:

A20. Induction Aziom

F {R(0) A ¥n[R(r) > R(n+1)]} D R(K)

for any slatement R2.

One instance of this axiom, which will be used later, is obtained by taking 12(n) to be D(Q(n))
op):

T62. Induction Theorem:
F {D(Q(O) o} O¢) A Vn[D(Q(n) o) Oz/;)) E](Q(n+ 1)> 01/})]}
> O(Q(k) D).

Using this induclion theorem we can derive the lollowing usclul induction rule:

O Induction Rule — OIND
F Q) > Oy
FQn+1) o [O¢ v OQ(n)]

FQKk) > Oy

QIND is useful for proving convergence of a loop: show that Q(0) guarantees © 4 and that for
cach n, cither Q(n + 1) implies Q(n) across the loop or it already establishes © ¢ and no further
exccution is neeessary. Then for any k, Q(k) ensurcs that O 9 is established.

Proof:

. FQ0)> Oy given
2. FO(Q(0) 2 O9) by Ol

PP

-
P

-3 W

WP VT S

3. FQn+1) > (Oy v OQ(n) siven
4. +3(Qr)20¥) 2 (OQn) 2 <) by T6, T4 and PR
5. F[Qn+1) ADOQMR)DCY) o O by 3, 4 and PR
6. FOQn)20%) 2 (Rn+1) > OP) by PR
7. +00(Q(r) > O¥) D O(Q(r+1) 2 OY) by OO
8. FO(QMR > ¢y) > OQn+1) D O¢) by T3 and PR
9. FVa[O(Q(n) 2 O¢) 2 O(Q(n+1) D Oy by VI
10. +0O(Q(k) > O9) by 2, 9 and T62
(1. +Qk) D> Oy by A3 and MP

While induction over the natural numbers is usually sufficient in order to prove propertics
of scquential programs, we need induction over more general orderings in order to reason about
concurrent programs {[LI’S]). Thus we have to formulate a more general induction principle over
arbitrary well-founded orderings.

Let (A, <) be a partially ordered set. We call the ordering < a well-founded ordering if Lhere
exists no infinitely decreasing sequence of clements in A:

oy > g > (g > ...

For cach well-founded ordering (A, <), the following is a valid induction rule:

R5. Well-Founded Induction Rule -~ WIND
FVYB[(B < a) > w(f)] > w(a)

F w(a)

This rule should hold for an arbitrary temporal formula w(a) dependent on a global variable
a € 4, and we adopt it as a primitive inlerence rule.

To justify the rule semantically we may arguc as follows:

Assume that the premise Lo the rule is true but the conclusion is net. Then there must exist
a model M and an a; such that w(ay) is false under M. By Lhe premise there must exist some ag
such that ag < ay and w(ey) is false under M. Arguing in a similar way we obtain an infinitely
decreasing sequence:

o) > Qg > a3 > ...

such that for each ¢, w(ay) is false under M. This of course contradicts the well foundedness of

(4, <).

Note that the induction axiom and rules ean be derived from WIND by taking (4, <) to be
(N, <)

......... P W W NN W 1 ¢ W R P NP P G P Y

T AL SN b oal iuat Sauh Jamn Ll e auem Mo ey 4 PO S e M e ————T R AN YA 2 o S hase S A et Mg Jhedte Sude: Zaoicdhu e e

! AT TP Pt

i A A |

. AP TN

Apx_"'

In order to use the WIND rule, one has to establish that the ordering < is indeed a well-founded

ordering. Several speciflic orderings are known to be well-founded (such as lexicographic ordering
over tuples of integers, multisets, ete.), and may be freely used. Towever the general statement
that an ordering ‘<’ is well-founded is a second order statement which may require second order
reasoning for its establishment.

By substitution of a special forin of a temporal formula we can obtain the following induction
principle for O formulas:

Well-Founded © Induction Rule OWIND
Fw(a) o O v 3B < a) Aw(B)])

Fw(a) D Oy

We show that OWIND follows from WIND.

Proof:

9.

10.
11.
12.
13.

14.

Fw(e) > O v I8[(B < a) A w(B)]) given
Fuw(e) 2 (Ov v OB <a) A w(B)]) by T8 and PR
FO(@3B[(B <a) A w(@)] 2 O¥) D

(CIBI(B <) A w(B)] > Ov) by T6, T4 and PR
F{w(e) A O(3B[(B<a) Aw(B) 2 O9)} 2 O by 2, 3 and PR
FO(BB <o) A w(p)) 2 O¢) 2 (wle) > O) by PR

FEBIB<a)AwB) o O9) = (~3B[(B<a) AwB)] v O¢) by T
- (N]ﬂ[(ﬂ <a) A w(p)] Vv 01/1) = (Vﬁ[~(ﬂ <a) VvV ~w(B) v Op)

by Al1, ER and PR

F(VB[~(B < @) v ~w(B)] V Op) = VBB <a) D> (w(B) > Oy))

by T13, PR and ER, since © 9 does not depend on g

F (388 <a) A w(B)] > ©y) = VBB <a) D (w(B) > Oy)]

by 6, 7, 8 and 'R

FOVB[(B<a) > (w(B) D O¥)] > (wla) 2 O) by 9, 5 and ER
FOVA[(B<a) D (w(B) o ¢¥)] > O(w(a) D G¢) by T3, 00 and PR
FVYAO((B <a) D (w(B) D Ov)] > O(w(a) 2 O¥) by T47 and PR

FVB[(B <a) > O(w(B) > O¢)] 2 O(w(a) 2 Oy)
by T60, iR and PR, since (8 < a) is global

- D(w((t) D O'l,/)) by WIND, taking w{«) to be D(w(a) o) 01/;)

Fwla) D Oy by A3 and PR 1

- s - A'...!“ "

'@

vI't—v,,,'.

I duk o A oo o mn o
A :) n' 0

Y
' ' 5 -
. . PR
- . e e

Ty Y
'™

IO MO 't

Eiasiuns o 4
a

e

D. PROGRAM PART

Our proof systein must, be augmented by additional axioms that rellect the structure ¢! the
program under consideration. The additional axioms constrain the stale sequences Lo be exactly
the set of exceution sequences of the program under study. This relicves us from the need to
include program text explicitly in the system; all the nceessary information is caplured by the
additional axioms.

8. PROGRAMS AND COMPUTATIONS

In our model a concurrent program consists of m parallel processes:
P yi=gE); [P .. || Pml)

IZach process I% is represented as a transition graph with locations (nodes) Ly = {&, ..., &}
The edges in the graph are labelled by guarded commands of the form ¢(g) — (¥ := f(y)] whose
meaning is that if ¢(y) is true the edge may be traversed while replacing ¥ by f(7).

Let £,€,,8,, ...,8 < L; be locations in process P;:

ci(y) = [y .= [i(7)]
(¢ 2] @

ck(y) = [:= Se(¥)]

The variables ¥ = (y1, ..., ¥n) are shared by all processes. We define Eo(§) = ey (H)Vv ... Vv
ci() Lo be the ezit condition at node €. We do not require that the conditions ¢ be cither exclusive
or exhaustive.

The advantage of the transition graph representation is that programs are represented in a
uniform way and that we have only Lo deal with one type of instruction. We show first that
programs represented in a linear text forim can casily be translated into graph form.

Assutne that a linear text program allows the following types of instructions:
Assignment: 7:= [(7)

95

)
:

- ..
. SN

PR S i

s 2,

)

-

[y

- Ll il - hdl v "
]
®
Conditional Branch: if p(y) then go to ¢, else go to ¢)
. Halt: halt »!
Waiting loop: loop until p(y) .
loop while p(y) ;
and the semaphore instructions '.'1
!
Request: request(y) ‘
Release: release(y)]
A linear text program for c.ch of the processes has the following form: i%
[o: I()
ll H Il j
. 3
L : halt or go to ¢ .‘
where £, ¢y, ..., ¢ are labels and Iy, I, ... are instructions from the list above. ‘
3 The graph representation of such a program for process /% will be a labelled graph with A
Li={f, ..., &} as the set of nodes. For each instruction I at label £ € L; we construct edges as 1
follows: P
» for the instruction :
L: g:= f(3)]
l: 3
- construct ; @ @) .f
- rue — [:= [(7
@ @ :
- "
b . :
I » for the instruction L2
- £: if p(y) then go to £ else go to €'
3 ¢
: conslruct B ;
(@) — (] @ j
9
:
. ~ p(y) - (] p o,
56 | ;
)
-
]

L » for the instruction
b‘ €: if p(§) then go to €
Al

construct

- p(3) — (1 @
"
L

~p(y) = (]

L: lll
{

» for the instruction

: if p(y) then ¥ := [(7)
£

construct
p(¥) = [7 = [(7)]

~ p(¥) = []

» for the instruction
£: loop until p(y)
£

' p(@) — (]
¢ ¢
g O ()

» for the instruction
t: loop while p(3y)
[

construct

construct

@

@ ~p(7) = []
p(y) — (]

» for the instruclion

[SRR

L. ..

P TR P S

N

h ' ey v .2 v T
-
L x
Lﬁ. .
|]
! €: request(y) 4
| ¢]
|
A - construct ;
?»a y>0—-[y:=y—1]
) £ 4 :
—
» for the instruction]
£: release(y) 3
¢ 3
.]
construct ‘
true — [y : =y + 1] »
(- ‘ »
]
For halt at 1abel € we construct no edges oul of £. 3
The actual translation into graph form nced not be carried out explicitly. Rather, the general 1
axiomatic deseription of transition diagrams can be easily translated to axioms for cach of the —
types of instructions in the linear text form. '?
A state of the program P is a tuple of the form s = (&%) with £ € L; x ... x L,, and]
7€ D", where D is the domain over which the program variables yy, ...,y range. The veetor 4
€ = (€', ...,0™) is the set of current locations which are next Lo be executed in each of the }
processes. The vector 7 is Lhe set of current values assumed by the program variables 7 at state s. .l
Let s = (€', ..., &, ..., ™;7) be astate. We say that process 1% is enabled on s il Eu(7) = .
true. This implies that if we let I run at this point, there is at least one condition ¢; among the ~
edges departing from € that is true. Otherwise, we say that P; is disabled on 8. An example of a b
disabled process is the case where £ labels an instruclion request(y) and y = 0. Another example 1
is that of €' labeling a halt statement. A state is delined to be terminal if no I is cnabled on it. “1
Given a program I” we define the notion ol a computation step of . .
Let s = (€, ...,€™;7) and 3 = ([‘, e ,Z;";ﬁ) be two states of P. Let 7 be a transition in]
P; of the form: : - ;
. c(7) - [¥ == S () ~
O (&) .
T .
~ ~. : ‘}
such that ¢(7) = true, 7 = f(%), and for cvery j # ¢, & = €. Then we say thal 3 can be '
obtained from s by a I%-step (a single computation slep), and write)
8 —>3. .1
An initialized admissible computation of a program P for an input Z = € is a labelled maximal 1
sequence of states of I: :
J
* l)‘.l Plz l)f:i !i
g. & >8; —> 8y >83 —>...
58
|
1
A

whick satisfies Lhe following three conditions. (The sequence o is considered mazimal if it cannot
be extended, i.c., it is either infinite or ends with a state sy which is terminal.)

A. Initialization:

The first state sg has the form:

S0 = (?0; 9(2))
where & = (€}, ..., €F') is the vector of initial locations. The valucs g(€) are the initial
values assigned to the ¥ variables for the input £.

B. State to State Sequencing:

P:
Kvery step in the computalion 8 — 8, is justified by a P;-step.

C. Fairness:

Iivery P’ which is enabled on infinitely many states in ¢ must be activated infinitely many
times in o, i.c., there must be an infinite number of F;-steps in o,

We define an admissible computation of P for input £ Lo be cither an initialized admissible
cormnputation or a suflix of an initialized admissiliie computation.

Thus the class of admissible compulations is closed under the opcration of taking the suflix.
"I'his is needed in order to cnsure soundness of the inference rule 21 (R3], We denote the class of

all €-admissible computations of a program I’ by A(P, €).
An admissible computation is said to be convergent if it is finite:

P, Py
0: Sg—2>8—> ... —>3;5.

If the terminal state s; in a convergent computation is of the form sy = (e, ..., 67,
. where each £ labels a halt instruction, we say that the computation has terminated. Olherwise,
3 we say thal the computation has blocked or is deadlocked.

:’ In order to describe properlies of states we introduce a veclor of location variables

7= (71, ..., Tm). Bach m; ranges over L, and assumes the location value € in a state

s= (', ..., 0 ... (™%

-
[

Thus we may describe a state s = (£;7) by saying that in this state ¥ = Land §=7.

A state formula Q = Q(T;7) is any formula which contains no temporal operators. It is built
up of terms and predicates over the location and program variables (7;7) and may also refer to
global variables.

We frequently abbreviate the statement 7y = € Lo at €. Since the L;'s are disjoint, there is no
difliculty in identifying the particular m; which assumes the value &,

59

. .
| . , .
' ae .._J!,L‘LA__A_A.L_LA!A_‘A._-_‘,_J!M

L L T o a a o - . .

;v—;v—rrrwv-v'—vwrv I A A, I T E ﬁ'.‘1‘7“i‘r1'1mﬁ-v

M e S T e N A A L S T e T

Let us consider a program P over a domain D with fixed interpretation I for all the predicate,
function and individual constant symbols. A model M is said to be admissible for I” if it has the
form:

M =(Il,u,d)

where « and ¢ satisfly the following condition:

There exists an a[Z]-admissible computation o € A(P, a[Z]) such that

cither
F;, P,
ois infinite: ¢ = sg—>8 —>8;, —>33 ...
and
o = 80, 81y 82y ..
or
P,'l sz Pi,
ois finite: ¢ = sg—>s5—>s5—> ... —>3y
and then
G = 350, 81, 82, ..., 8f, 85,

Thus we force & to be always infinite by indefinilely repealing Lhe last state of o if it is finite. This
corresponds Lo our inluition that while the computation may have terminated, time still marches
on, but no further change in the program will ever occur.

Let us denote the class of all admissible models for a program P by C(P). Note that this
class, differently from A(P, £), contains computations corresponding o different inputs.

We define the state formula stating that a process /% is enabled as follows:

Enabled(P;77) =\ [(m =€) o Ed7).
el

For the complete program P we defined

m
Enabled(;7) V Iinabled(Py; 7; §).

i=1
Thus a state s = (£; %) is terminal iff
Enabled(P; ¢;7) = false
and we may define
Terminal(7;3) = ~Lnabled(P;7;7).

60

TN s T e

4

1
A

TV T TS Y YW T RTTETY yTTETYE T AT VTR T e TR Y TWYR OO FORTSTFOOFoOowmM/meEyooowooW oo oW W EYOOooOW T TS OOTOTT R T T . R T Ty F ® . w

Let the following be a transition 7 in process I

O) - "71 = /() (O

We define the transformation associated with the transition 7 by:

ro(m;g) = (7[¢/n]; 1(7))-
The transformation is obtainced by replacing the current value £ of m; by € and the values of 7 by
i)
Let o(7;y) and ¥(7;7) be two state formulas. We say:
e The transition 7 leads from p to 9 if the following implication is valid:
(7)) A atl A c(7)] 2 ¥(r(7;7)).
o The process P; leads from p to 3 il cvery transition 7 in I’ leads from ¢ to 9.
o The program I leads from p to 9 if every I; leads from p to 9.

We arc recady now to give a temporal axiomatization for the notion of computation under the
program P.

9. AXIOMS AND RULES FOR CONCURRENT PROGRAMS

The first axiom states that the location variable 7; may only assume values in L.

A21. Location Aziom -- [LOC

Fmel; fori=1,...,m.

- SV

This is an abbreviation for:
F(mi=8)V (m=£6)Vv...v(%=10).

Since all the locations are disjoint, it also follows from the equality axioms that a; may be cqual
to at most one 8;- al a time.

For cach of the three requirements defining an admissible computation we have a corresponding
inference rule scheme:

»
R6. Initialization — INIT R
For an arbitrary temporal formula w:]
Flatly A §=g(z)] D Quw]
FOw)

61

SN - SN

PP . B L L

.'—rvavsfv L rrE
t '

R . A e . A e . S b S A - M S AL S

For let us assume that the premise to this rule holds. This implies that Ow is true for all
initialized computations. By the semantic definition of O, this implies that w is true for every
suffix of an initialized computation, i.c., for every admissible computation. Thus, w is C(P)-valid,
and by generalization (OI) so is Ow.

R7. Transition —- TRNS

Let o(7;y) and ¥(7; §) be two state formulas.
F P leads from ¢ to ¥
F lo(7;9) A Terminal(7;)] O ¥(7;7)

Fe D Oy

Indeed let s be a state in the sequence 6 corresponding to an admissible computation o, and
let s' be its successor in 6. Assume that ¢(s) is true. There are Lwo cases o be considered. In
the first case, 8’ is derived from s by a Pi-step for some ¢ = 1, ...,m. But then, by the first
premise, F; leads from ¢ to 9 and therefore 9 must be true for s'. In the other case, s is Lermninal
and ¢’ = s the repetition of the terminal state of a finite computation. But then s is terminal
and salisfics the antecedent of the second premise, leading to ¥(s) = 9(s') = true. llence, in both
cases 1(s') must hold and the conclusion of the rule follows.

Note that the first premise to this rule requires establishing many conditions involving the
individual transitions of each of the processes. [fowever, by examining the definitions of “leading
from p to 9" we sce Lthat they arc all expressible as classical statements involving no temporal
operators. Thercfore this premise should be provable from the domain axioms plus the usual
predicate calculus proof system. The second premise is also classical, and ensures the consequence
after the sequence has reached a terminal state.

R8. Fairness -— IFAIR

Let o(T;y) and ¥(7;7) be two state formulas and Py be
one of the processes.

A. F P leads from p to p V9
B. F P leads from ¢ Lo ¥

Fle A OO Enabled(Pk)] 2 ol

To give a semanlic justification of this rule, consider a computation such that ¢ is truc initially.
By A, o will hold until ¢ is realized, if ever. By B, once P will be activated in a state satisfying
@ it will achicve ¥ in one step. Consider now a sequence o such that o A OO Enabled(1%) is
truc on o. This means that ¢ is initially true and #% is enabled infinitely many times in 0. By
fairness, P will eventually be activated, which, if 3 has nol been realized before, will achicve ¥
in one step.

Since (pUy) D O 1, we often use the FAIR rule in order to derive the consequence
e A OO Enabled(l’)] 2 O

There are several derived rules that ean be obtained from the above axiomatization.

62

PR |

4 EDSIRILICPINPE . J TN

S

e o200
-

Invariance Rule INV :]

k P leads from o Lo p

e YT
s B .
A

Fe D 0Op . .'4

- Proof:)
.. 1
- I. F P leads from o to ¢ given]
2 Flp A Terminal] O ¢ by PT °

3. Fp 2 O0p by TRNS]

g

. Fp DO by CI y

P P y Cl _

o

o

Initialized Invariance Rule - 1INV

Let ¢ be a state formula

Flatlo A Y=¢g(Z)] D ¢ .1
P leads from ¢ to B

F Oy
Proof:
I Flatlo AG=g(T)] D p given
2. |k P leads from p to @ given
3. Fp D 0Oy by 2 and INV
4. Flatly A F=g(z)] D Qp by 1, 3 and PR
5. F0Op by INIT

ol

The NV rule is the rule most often used in order to cstablish invariance propertics of programs.

Unless Establishment Rule — LIER

Let ¢ be a state formula

P lcads from ¢ to p V¥
Fe D (pUy)

Proof:

[. F P leads fromp topVy given

63

LIPS P G P R S Py PSP W WP

I T e S T TR T R TR R T T TR W R AT, TN YA T W T T T T TR TR TR Y ow e vy W w T e

a
-

2. Fop D (p V) by T
3. Flp A Terminall > (p V ¢) by PR
Fp D Olp v 9) by 1, 3 and TRNS

5. ko D (pU9) by s.u_l .

Iy v
Ty, ’ vy
-

"""‘”""H' O
e L Sy
- .

-
w

The following rule is a consequence of the I'AIR rule. >

Fventuality Rule - EVNT

the processes.

Mot JLAR A8 A jen ~tn Y
. . * [] . ‘ R
. . .

Let o(7;7) and ¢(7; ¥) be two state formulas and Py one of j
)

A. F Pleads from o to p V¢
B. F D% leads from ¢ to 9
C. Fp 2 Oy Vv Enabled(I’%))

727 TET s T T orT

Fe D ply
Proof:

1. F Pleadsfromp top VY given

2.+ P leads from o to o given .{
3. ko 2 O(¥ V Inabled(Py)) given J
4. Flp A OO Enabled(P)] D pUs by 1, 2 and FAIR
5 ko D (Op Vv pUy) by 1 and CINV “
6. F[p A O~y D O Enabled(l%) by 3, T8, Al and PR |
7. FO(p A O~9) > OO Enabled(l’) by OO
8. F[Op A O~y] 2 OO Enabled(l) by T3, T7 and 'R ¥
9. F[Op A ~OO Enabled(I%)] 3 O by Al and PR "
10, FOp D OY by 4,9, A3, At0 and PR

(. FOp D pUy by 10, T24 and PR]
122 F o D pUy by 5, 11 and I’RJ P?

In contrast with carlier rules, premise C of EVNT is nol purely classical since it conlains the
temporal operator O. Since C has a form similar to the conelusion of the SVN'T rule, it is Lo be Y
expected Lhat its derivation will require once more Lthe application of the IKVN'I' rule. This scems

64

. to imply circular reasoning. However, note that at cach nested application of the EVNT rule,
- another /% is taken out of consideration. This is because in trying to establish O Isnabled() we
nceed not consider any Ik-steps at all, since when they are possible, [% is already enabled.

A uscful special case of C that frequently suffices for the application of the EVN'T rule is:

C': Fo D [¢ Vv Enabled(P)).

Note that the EVNT rule can also be used to establish properties of the form
p D OY,

since pUyp D O

. The EVNT rule is the onc most often used in order to establish both eventuality (liveness)
: properties and precedence properties.

85

E. EXAMPLES

In this scetion we present scveral examples of prools of properties of programs using the proof
system deseribed above.

10. EXAMPLE 1: DISTRIBUTED GCD

Let us consider the following example of a program computing the greatest common divisor
of two positive integers in a distributed manner.

(yl;y?) = (zl) x2)

lo:if y1 > ya then yy :=y1—y2 mo : if Yy < yz2 then y2 :=y2 —yi
£y :if y1 # y2 then go to & my :if Yy # ys then go to mg
£y : halt mo : halt

- P - — Py —

We wish to prove total correctness for this program, i.c.,

Theorem:

F [ai(lo,m0) A (y1,y2) = (z1,22)] D Olat(le,m2) A y1 = ged(z, z2)]
We will split the proofl into two parts, proving scparalely invariance and termination.

Lemma A:

F Olged(yr, y2) = ged(zy, z2)|

Proof of Lemma A:

Let us denote ged(yy, y2) = ged(zy, z2) by @(z1, z2,y1,y2)-

It is casy Lo check thal every transition in {2 leads from @ Lo . Also

F [(.'/h?/z)':(ﬂ?l,??‘z)] 2 Sa(xlvx'byl’y'l)'

- 66

4

)
Pl NPT TS

L .

o

h- ST

PP S ¥

BN Joth e et ok AN S ot oien mem i Lt B S B S Aot d . Sran A4 - T

Thus we have Lhe two premises to the LINV rule, which yields the desired result.

. |

Lemma B:

Flatlon A atmos A (y1,y2) > 0 A (yi+y2) Sn+ 1) Ay # yol

F »] O[at[o,l A atmg A (yl,yg) >0 A (yl + ye < n)]

L lere we use atly; as an abbreviation for atly Vv atf), atmp, for atmgV atm; and
L (y1,92) > 0 for (y1 > 0)A(y2 > 0).

{' Proof of Lemma B:

[et us define
oyi,y2,n): atlor A atmgy A (y1,¥2) > 0 A (¥ + y2 < n).

Thus we have to prove:

Flo(y,ye,n+ 1) A (y1 #v2)] 2 Oy, yz,n).

We will split the proof into two cases:

Bl. F[p(yi,yzn+1) A (g1 > 52)] O Oe(yr,y2,7n)
B2. F [po(y,y2,m+ 1) A (31 < y2)l D O vy, v2,n)
The lemma obviously follows from these two statements.

To prove Bi we first observe thal by PR:

. F <p(y|,y2,n+ 1) 2 (atlo A% atll)

Consider therefore first the case that £, is at £3. We take

/

o't plynyz,n+ 1) A (y1 > y2) A atly
1/}’ : ‘P(ylvy2’n)'
We claim that ¢’ and 9’ satisfy the premises of LVNT with Py = Py.

To sce this, consider requirement A of ISVNT that states that every transition in I” leads from
o' to ' V.

Consider transitions in [%. The only relevant ones are mg — m and transitions leading out
of my. The transition mg -» my under 7, > ye leaves @' invariant. Again, under y, > y2 the
only transition out of m; gocs to my leaving o' invariant.,

- - 67
3

P U SIS SRy S TRy P G W W N VI S GGGy G SR S

B ASRES SEEE seel oy —

% ..o o Baa e L

‘‘‘‘‘‘‘‘‘‘ - - = - - Lg * - v A L Bt L - - Ad - - - wﬁwﬁ-‘j
4
.‘.
The only transition enabled in Py is &g — £, which replaces (yi,y2) by (y1 — vz, 92). If
yi+y2 <n+1and y; > 0,y; > 0 then certainly (yy —y2) +y2 <nand (y, —y2) > 0,2 > 0.
Thus £y — £, leads from ' Lo ¥’. This also establishes requirement B with P, = Py. ."
Since E,, = true, condition C is trivially fulfilled. Consecquently we conclude by the EVNT ;
rule that o' D O/, i.e,
9
2. F[p(y,ye,n+1) A (y1 > y2) A atly] O O p(y1,ya,n). B
I.‘
Consider next the case where Py is at £;. By taking
" plynyz,n+1) A (g > 92) A atdy
¥ =o' ply,ya,m+1) A (31 > y2) A atb. ;4
4
We can show that the premises of the EVNT rule are satisfied with respeel to o, 9", Conscquently .
we have F " 2 O ¢ i.e, X
3. Flelynya,n+1) A (y1 > y2) A atéy] D N
Olo(y,y2,m+1) A (31 > y2) A atly] o
4. F [p(yi,y2,n+ 1) A (31 > y2) A atly] O O oy, y2,n) by 2, 3 and OC D
5. F[p(yn,y2,m+1) A (y1 > y2)] 2 O elyi,y2,n) by 1, 2, 4 and PR 5
4
This establishes B, L.i
By a syminctric argument we can establish B2. By propositional reasoning B1 and 132 lead to ;i;
Lemma B. 3 N

Proof of theorem:

We will now proceed with the proof of the main theorem.

6. F oy, y2,mn+ 1) A (31 #y2)l O Celyr,y2,n) Lemma B
7. Folynyn,n+1) D [y =y2) V Oelyi,ye,n) by PR
8. Folyny,n+1) D [Olyr =y2) V Oy, y2,n)] by Tl and PR
9. F "'80(?/1,?/2,0) by PR,
using the domain property thal the conjunction ‘
(y1 > 0)A(y2 > 0)A (1 + y2 <0)is impossible .{
10. F o(y1,92,0) O Oyr = v2) by PR]
' 1. F ey, y2,n) O Oy = y2) by 8, 10 and OIND ' 1
E 12 F In.p(ys,yz,n) O Oy = v2) by 31 ‘.
E 13, F [at(lg,m0) A (y1,¥2) = (21,52) > 0] D Jdnup(yi,y2,n) 1
T 68
3 .

R T

TR, e ————— T Wy

by taking n =z, + 2 > 0.
By considering the different locations of 1y and P, under the assumption that y; = yg it is
casy (though long if carried out in full detail) to establish
1.+ (y1=y2) D Olatlly,mz) A (y1 = y2)).
By combining 12, 13 and 14 using ©C we obtain:
15. [at{€y,mo) A (y1,¥2) = (z1,22) > 0] O Olat(ly,ma) A (y1 = y2))-
Together with lerama A and T10 this gives

16. F [af(o,mo) A (y1,92) = (z1,22) > 0] D Olal(ls, m2) A y1 = ged(z1, 22)]
since (yl = yz) Dy = .(ICd(Z/l,‘!Iz)

Note that theorem T10 enables us to infer from a previously cstablished invariant F O @ and
an implication F wy D O we the implication F wy D O(wz A @). 1

11. EXAMPLE 2: SEMAPHORES

IFor our next example we will present a very simple program with semaphores:

y:i=1
o : request(y) my : Tequest(y)
¢, : release(y) my : release(y)
£y : go to £y my : go lo my
.- -

This example models a solution to the mutual exclusion problem using semaphores.

There are two propertics thal we wish to prove for this program. The firsl is that of mutual
exclusion, namely:

Lemma A:

F O[(~atly) v (~atm)]

Proof:
Take
oy, mey): (atly +atmi+y=1) A (y>0)

69

9.

1/
Py g el il ol A hcd

».

Py

(L

aa o

o

a

Rt Sad b otes

T T Y T T '."."v TeT T .

SR

e i rm e c= m v W TEy~a T AT .= _w. - _ w- W T¥C3I W R e R T — T, = e = ===

In expressions such as the above we interpret proposilions as having the numerical value 1 when
true and 0 otherwise.

We can casily show that ¢ is preserved under every transition. Ilfor example, consider the
transition £o — £;. When it is enabled, we have y > 0, and the transition assigns to the variable
y the value y — 1 which is nonnegative. Considering the value of the sum

atl; + atmqy + vy,

at¢; changes from 0 to [on this transilion but y is decremented by 1. Consequently the value of
the sum remains invariant.

Initially, até; + atm; +y=0+0+1=1 and y=12>0.

Ilence o satisfics the two premises of the [INV rule, from which we conclude
Ii: FDOlatly +atmy+y=1) A (y 20)).
This implies
F Olatey + atm, < 1]

which is equivalent to Lemma A.

ol

The sccond property is Lhat of accessibilily. It states thal cach process will eventually be
admitted to its critical scction. This is established by:

Lemma B:
Fatly O Caté
and

Fatmyg O ©atm,

Proof:

Let us define

pr: atlg A atmy A y=20
Yi: y>0

We show that © and ¥ satisly the conditions of the KVNT rule with k = 2.

In fact the only enabled transition is m; — mg which does lead from ¢ to ¥;. While at m,,
I’ is always enabled. Thus we conelude;

1. Flatly A atmy A y=0] O Oy > 0) by EVNT with k =2

70

—— A A e PRSP e B D Sies 2 it le L o - PP SRS I WY UL USSP VY S

.o
WO W)

. S

g N

.:;» de g g 4 4

12

— =

W
)

o

'
[R I

e Nt s il
. N

i JReed

LI St diie 4 ol i aatent s L - T —————————— - T

2. F[atly A atmy] DO Oy > 0) by Iy above, 1 and PR

3. Flatly A atmpy] O (y > 0) also by I; and PR

4. Fatly O Oy > 0) by T, 2, 3, LOC and PR

Take now

w2 : atly
Pg 1 atl

We check premises A to C in the EVNT rule with respect to the pair {pg, %2} taking k = 1.
Clearly I’ always leads from pg to @2 V 92. The process Py always leads (when enabled) from oq
to 9. Condition C is guaranteed by 4 above. We therefore conclude

5 Foatfy O Oatd.

By a completely symmetric argument we can show that:

F atmg > © atmy.

ol

12. EXAMPLE 3: MUTUAL EXCLUSION

As a third example we consider a program that solves the mutual exclusion problem without
semaphores:

(y1,y2,t) := (false, false, 1)

£ : Noncritical Section tng : Noncritical Scction
¢y 1y = true m, : yg == lrue
by :t:=1 mg:t:=2
83 : tf yo = fulse then go to €5 my : tf y, = false then go to mg
Ly:if t=1 then go to &3 my:if t =2 then go to my
£5 : Critical Section ms : Critical Section
bg :yy 2= false mg : yg 1= false
£y : go to £y my ; go to my
=P - — Py -

For convenience we will abbreviale formulas até; Lo £;.

71

-~y

|
J

) - SV R PRI

The principle of operation of this program is that cach process 1% has a variable y;, 1 = 1,2,
which expresses Lhe process’s wish to enter its eritical section. The variable y; is set to true al ¢
and m; and rescl to false at £g and myg, respectively. In addition, each process leaves a signature
in the common variable t. The process I’ sets it to 1 at &; and P, scts it Lo 2 at my. A process
P; may enter its critical section only if cither y;, = false (mcaning that the other process is not
) interested) or if t = 7, for 7 # 1. The latter case corresponds to both processes being interested
- in entering the critical section bul P; being the last to pass through the signing instructions at

e
B\ & DRI I RO

(82,m2). i

' . . N . »

To formally prove that this program is correct we first prove several invariance properties. }

‘_' Lemma A: S
3 Fy = b

Here ¢3¢ stands for atly g. Thus the leinma states that

yy = true ifand only if m, € {£2,Z3,£4,€5,(6}.

Proof:

To prove the Lemma we take

p1: (1 = las)

{ } and show that it is invariant under every transition, i.c., every transilion leads from ¢ to pq.
The only transitions that can affect the truth of ¢, arc £; — &, and &g — ¢7.

In ¢, — £; both y; and atéy g become simultancously true. Similarly in &g — €7 both y; and
atfy_ ¢ become simultancously lalse. Thus

3 . F(y = tag) D Oy = log) by TRNS
' 2.+ {at(lo,mo) A [(y1,y2,t) = (false, false,)]} D (y1 = £2.6)
3. o D(yl = 82,.6) by i, 2 and IINV J
-

Lemma B:

Fys = mg g

e

. The lemma is proved hy a symmelric argument.

Lemma C:

F{t=1)V (t=2)

72

T Rt A et A St ie Rt Jaae - ——— T T T T

This lemma states that the only possible values of the variable ¢ are 1 or 2.

j Proof:

The Lemma is clearly provable by the HNV principle. Obviously, it is true initially since
t = 1. The only iransitions that modily the value of ¢ set it cither to I or Lo 2. Thus P always
leads Lo a stale satislying (¢t = 1) v (t = 2). 1

Lemma D:

F 85,6] [(~y2) \ (t: 2) \" TH2]

Proof:
Let pq stand for €56 D [(~y2) V (t =2) V my).

It is clearly true initially since b &g D ~£56. To show that cvery transition leads from g to
2, consider the only transitions thal may falsify @g, i.e., that may possibly lead from g to ~p3.
Potentially they are:

e {3 — €5. This iransilion is possible only under ~y2 which makes
(N:ljz) \% (t = 2) V mg

true.

e {4 — 5. This is possible only when ¢t # 1 which by Lemma G makes
(~y2) V (t=12) V my

again true.

The other transitions we should consider are transitions of P while Py is already at €5 5. The
only ones to be considered are those which affect any of the variables in ~y2 V (8 = 2) V m,.

e m — mgy. Causes my to become true.
e my —» my. Causes t to be sct to 2.
e mg — mq. Scts yy to false, making ~yq true.

The lemma follows by the INV principle. Jd

Lemma E:

Fmsg O [(~yn) v (E=1) Vv &)

The lemnma is proved by a complelely symmelrie argument.

73

.

@,
Sdeded J ORI

NPT)

S L F(ly Amgq At=2) D Ol by EVNT with k =1,

:_' . using lemma A

r® 9. k(g AmgaAt=2) D Oty A mas At=2) by EVNT with k = 2,

using lemmas A,

3. F(lz Amgqa ANt=2)D Oty by 2, 1 and OC

'!' 4. F (l3'4 Amgq A L= 2) D Oy by 1, 3 and PR

p

' 5. (£3,4 A 7n2) 2 0[[5 \% ({3’4 Amygy AL= 2)] by EVNT with bk =2

3 74

- @

- L N

Theorem:

F (~€s56) V (~ms;)

This theorem proves the mutual exclusion of the processes.

Proof:

1. F (es,s A ms,s) o) [((~y2) \) (t = 2) A" mg) A ((~y1) \% (t= l) \% 82)]
by lemmas C, D and PR

2. k(€6 Amse) D [y Ayz A~y A ~my| by lemmas A, B, LOC and PR
3. F(ls6 Amge) D[t=1) A (t=2) by 1, 2 and PR

4. F ~(ls5 A msg) by the equality axioms and PR,
using the domain fact that 1 # 2

5. F (~ls6) V (~msp) by PR P

Next we will prove accessibility. We will only prove:

Theorem:

Fatly O Oatly
The result for P is completely symmetric.

Proof:

The proof will proceed by a sequence of statements most of which are proved by the KEVNT rule
in the version whose conclusion is ¢ 2 O 4. Simple passages justified by propositional temporal
reasoning will not be fully presented and their omission is denoted by mentioning TR in the
justification clause.

pa

il

s AT

i

P nma mhess mme et et giiies AR NP S AL el st RN Jaa (IR A e

6. F (€34 A my) D OUs

7. k(€34 A my) D Olls Vv (€34 A m2)|

8. F(ls34 Amy) D Ol

9. F (83 A mg) D Olls V (€34 A my)

10. k(€3 A mg) D Oy

1. F (€ AN mg) D Olls V (€34 A my) V (&3 A my))
12. F (84 A my) D Oty

13. F {f3q A my) D Oy

14. F (€34 A my) D Olls Vv (€34 A mp)]
15. F (€34 A mg) D Ol

16. F (€34 A mg) DO O(€3,4 A my) by EVNT
17. + (34 A mg) D Ol

18. F (€34 N ms) D O(l3,4 N mg)

19. F (€34 A m5) D O

20. F (€34 A my At=1) D> O(l34 A ms) by EVNT with £ =2 and lemma A
2. F(fsga Amqg At=1) D Oy

22. F(lzga Amzg At=1)D O(l3y AN my A t=1)

by 4, 5 and PTR

by EVNT with & =2
by 7, 6 and PTR

by EVNT with £ =1
by 9, 8 and PTR

by EVNT with k =1
by 11, 8, 10 and PTR
by 10, 12 and PR

by EVNT with k =2
by 14, 13 and PTR
with £ = 2 and lemma E

by 16, 15 and PTR

by EVNT with £ = 2 and lemma [

by 18, 17 and PTR

by 20, 19 and PTR

by EVNT with k = 2 and lemma A

23. (834 Amg ALl= 1) D O
24. F ([34 Amgq A= 1) D Oy
26. F ([34 A 171.3,4) > Ot

We may summarize now as follows:

by 22, 21 and PTR
by 21, 23 and PR

by 4, 24, lemma C and PR

26. | 83'4) [63,,, A (mo Vm VmgV mgV mgyV mgV mgV 'm7)]

27. F 83,4 D QO
28. k& D Olyy

by LOC

by 26, 13, 8, 6, 25, 19, 17, 15 and PTR

by EVNT with & =1

‘a -t

e ian’

e ® e .

re
8 29. Rl D Ol by 27, 28 and OC
3
. 30. F& D Oy by EVNT with & = 1
3. + ¢ DO Oty by 29, 30 and OC
- ol
-4
o
o 75 :
9 :
p
¢ "
Lo) N N Ry

. s s g ' g

F. COMPACT PROOF PRINCIPLES

In the preceding sections we introduced a comprehensive proof system for proving arbitrary
temporal propertics of concurrent programs. Iowever, as demonstrated in the last examples a
fully formal proof tends to be rather tengthy and sometimes tedious Lo follow. Consequently we
will next discuss shorter and more compact represcentations of proofs and corresponding compact
proof principles. All these principles can be derived in the basic proof system presented above.
Conscquently, a prool according Lo these principles can always be mechanically expanded into a
more detailed proof using just the basic axioms. We will discuss the three main classes of properties
one may wish to prove about programs, namely: invariance, liveness and precedence properties.

13. THE INVARIANCE PRINCIPLE

The IINV principle does not significantly simplify formal proofs. Most of the needed work
in applying the HINV principle is in establishing the premise that the program F leads from ¢ to
@. Several heuristics or meta-rules can be suggested in order to reduce the number of transitions
that have to be checked, which in the worsl case is proportional to the size of the program. For
example:

a) Only transitions that modify variables on which ¢ depends should be checked.

b) Assume that ¢ has the form o = ¢ V g (similarly for implication), and that
some variables y1,. . ,¥m appear only in ;. Then, in checking transitions that
only modily Lhese variables, it is sulficient to check transitions that may falsify
1 and one may assume in checking them that g, = false.

¢) Assumc that an invariance x has already been established before. Let
[0 A x] 2 (~atd)
for some location €. Then no transitions of the form ¢ — £ need ever be

considered in showing that 1? leads from ¢ to 3.

A simple generalization of the HINV rule is given by:

Generalized Inveriance Rule - GINV
A Fp D9
B. Flatly Ay=g(Z) 2 ¢
C. F Pleads from p to

F Oy

Cerlainly premises BB and C ectablish = Oyp according to lINV, from which by premise A and the
ag rule, F Oy lollows.

76

a PR o P (P P U YL I Y WA T U Wy o I S Y

.!LAA‘AA

v, . PSRRI

S\ SRR -

WY . Je

B S L Jue A Mes Bn -) — v AR A s e A e i el Ty v - b AL A S =

The advanlage of the GINV principle is that no additional temporal reasoning is required and
the rule can be proved complete by itself. By this we mean that, given a program P, any slate
property ¥ which is invariant (or all executions of P can be proven invarianl by a single application
of the GINV rule and no additional temporal reasoning.

Theorem:

The GINV rule is complete for proving invariance properties,
Proof:

Let ¥ =_1/)(E; ;) b_(. a state property, possibly dependent on the input variables Z. We define
astale s = (€;7) to be &-accessible in P il there exists a segment of some computation inilialized
with Z = £ thal rcaches s, i.c.,

(Lo;g(€)) — ... — (&7).
Deline the predicate ¢ = o(Z; 7; y) by:
(6, 4;7) = true & (£;7) is E-accessible.

Thus, ¢ characterizes all the states that are T-accessible. We will show that the predicate ¢
so defined satislies, together with 1, all the premises required by the rule GINV.

Consider premise A. Since 4 is invariantly true in all computations of [’ it must be true for
every accessible state (£%). Consequently

o(&67) 2 Y(&67);
when gencralized to arbitrary €, € and 7 this implies
Eo D 9.

Since we assume that the underlying domain theory is adequate for proving all classically sound
formulas this implics

Fo D 4.

Consider now premise B, Since every initial state is by definition accessible we certainly have
E o(%; f0; 9(Z)).
Again by completencss of our domain part with respect to classical formulas, this leads Lo

Flatlo A y = g(z)] D »(Z;7;7)

Finally, consider premise C. Clearly cevery transition in [? leads from an F-accessible state to
another Z-aceessible state. Consequently

E P leads from ¢ to .

7

L] P LIPS Y P O LI WU AT AT WL W O G S S G VR) . PP | Y s A K

»

ERP U P

LA

LA

" ,"A.Fﬂ b X ataen

L]

| - o

AT e v . Laamen) A ISk Suad B sall Sral e SGS il SSGE SSEh TN SN Sute S s

From this premisc C follows by completeness of the domain part.

. |

In the preceding theorem we have only shown the existence of an appropriate state predicate
©. We have not discussed the question of the exact formal language in which such a predicate
can be expressed. However, assuming that our domain contains the integers or some isomorphic
structure, and using a first-order language, it is not difficult to show that the statement:

“There exists a finite computation of P leading from (¢y; g(€)) to (¢;7)”

can be Godel-encoded into a first-order statement over the integers.

14. LIVENESS PRINCIPLES

As a typical example of a detailed proof of liveness properties we may recexamine the proof of
accessibility for the mutual exclusion program (I2xample 3). The structure of such a proof proceeds
through a chain of events characlerized by state assertions. Lel the eventuality to be proved be
© D Oy where both ¢ and ¢ are state propertics. We may regard ¢ = o as being the last
assertion in the chain. Then we identify an assertion ¢ such that by a single application of the
EVNT principle we can prove

Fpy D O
In the example considered we have

(/R 43
pr1: b A mg 4 A (t=2)

Next, we identify an assertion g such that by a single application of the SVN'T principle we
can prove

Fog D O(<p1 \% 1/))

In the general step, we identify an assertion o; such that by a single application of the EVNT
principle we can prove

Fo; O O(Vpl)
i<s

r
I'inally we have to prove ¢ 2 (Vgp;) where g, ©1, ..., p, is the chain of assertions
=0
constructed. We may summarize this proofl paltern by the following prool principle:

78

[.'_ .r 7 71

g
2 e

B MMM
L R A N

-—vz Lt aca A 3

L SR Al e a0

The hain Reasoning Proof Principle - CIIAIN

Let o, @1, ..., ©r be a sequence of state properties satisfy-
ing the following requirements:

A. F P leads from o, Lo V(p,- fori=1,...,r.
J<y

B. For cevery 7 > 0 there exists a k = k; such that:

F Pk leads from p; to V<pj
i<

C. Fori> 0and k = k; as above:

Fo; D <>[(V<p]~) V Enabled(Py)]

i<
r r
k (VSOi) o] (Vsoi)U.tpo
i=0 i=1
Proof:
To justify this principle we will prove by induction onn, n =0, 1, ...,r, that

F (\T/%‘) > (\n/soi)usoo-

1=0 =1

[F'or m = 0 we have + g D po from which trivially follows by axiom A9

F oo O (false U py).
Note thal we interpret an empty disjunction as false.

We assume that the statement above has been proved lor certain n and we atlempt to prove
it for n + 1.

n

Consider the EVNT rule with ¢ = pp 41, ¥ = (VSO;')- By premisc A of CHAIN we obtain
~0
that P leads from ¢, = p to '

(V ‘Pj) = (ﬂpn+l v (V‘pJ)) = (p V ¥).

F<n+1 j<n

This provides premise A of EVNT. Let k = k, (. Then by premise B of CIHAIN, Py leads
from pp = @ Lo (V p;) = . Similarly, premise C of CHAIN yiclds that
1<n+1

I. Fyp 2 O v Enabled(1%)).

79

) N
La A!‘.‘..u.h.-.

. S
ad i s o

WAV IS W

L.!;v.‘v

'®

W W e g K T e e e LYY T . Ty T e T Ty R R R T R W e R R, T e, T e T T e T e e e T e T e e T T e T T

By the EVNT rule it follows that
2. Fo D oUWy

or

n

3. "Pn+l 2 ‘Pn+lu(\/§0i)-
+==0

By the induction hypothesis and the WU rule this yields

n

4. F ony1 D $0n+1u((vfpi)u900)-

=1
Again by the induction hypothesis using part of A9, wo D w;Uws, we can obtain

n n

5. F (V) 2 pariU((V 0:)lUpo).

=0 1=1
Combining this with 4 above yiclds

n+1 n

6. }'(V‘P:) D ‘Pn+lu((V‘Pi)U-’PO)-

i=0 i=1
By T38, pU(qUr) D (pV q)Ur, we can reduce the nesting depth of the U operator to get:

n+1 n+l

7. F(Ved 2 ((Ve:)leo)
=0

i=1
as needed.

Taking n = 7 concludes the proof of the principle.

- |

In presenting a proof according to the chain-reasoning principle it is usually sufficient to
identify g, ©1, ..., @, and for cach 7 to point out the “helpful” process ’x = P%,. It can be left
to Lhe reader to verify that premises A to C are satisfied for each 1 =1,2, ...,7.

We prefer to present such proofs in the form of a diagram. Consider a diagram consisling
of nodes that correspond to the asscerlions @g, @1, ..., @r. For cach transition allected by some
process [, that leads from a slate s salisfying o, Lo a slale s’ satislying pe, £ < 1, we draw an
edge from the node p; to the node e and label it by P}, the name of the responsible process.
All edges corresponding to the helpful process I’y = 7, arc drawn as double arrows. We do not
explicitly draw edges corresponding to transitions from ¢; back to itself. However it is assumed
that such edges may exist for all but the helpful process for ;.

As an example we present a diagram form ol the proof of accessibility for the Mulual Exclusion
program. It is given in Fig. 1. In constructing such a prool we may frecly use any invariants
previously derived.

80

@
'A,‘L._,__-___.____-J

. 4%

..! ihdadad bkl .! PO

RIS 1, e

.

|
N

PP

9
% Fig. 1. Proof Diagram for the Mutual Exclusion Program

81

Ry

[t -Manesen Jtad it

In this program, and typically in all non-terminating programs thal have no semaphore in-
structions, we do not have to check premise C of the CHAIN or EVNT rule. This is because in
non-terminating programs without, semaphores every process is continuously enabled and therefore
condition C is automatically satisfied.

In contrast let us consider the proof of accessibility for example 2 - a program with semaphores,
Here we want to prove £y O O ¢). The main diagram here is very simple:

It denotes a single application of the EVNT rule with ¢ : atfy and % : atl; with P = I,
being Lhe helplul process.

Py

Iowever, in order to justify premise C, which is not trivial in this case, we have to prove
Fé O O([[\' y>0).

For this we have to consider [2’s position. If % is at mg or mg then y = | by the invariant I
proved above. The only other case is when [% is at. 1ny where by a single application of the KVNT
rule it will evenlualiy move to my producing a positive valne of y. This may be represented by a

sccondary diagram:
Py

== lo,y > 0

The diagram representation of a proof according to the CHAIN principle is very simi‘a, to
the proof lattices introduced in [OL] as a concise preseatalion of a proof of a liveness properly.
A superficial difference is that they choose Lo represent as edges the consequences of Lhe ISVNT
rule, while in our representation edges stand for the premises of the EVNT rule which are also the
premises bo the CHAIN rule. To illustrate this difference, consider the following trivial program:

bh: y:=y mg: go to mg
f[:
- P - -y -

The liveness properly to be proved is g 2 O L. Below are diagram representations of the
CHAIN principle and a proof lattice according to [OL].

/
bo Iy o

I
™
(o) ()
CHAIN Diagram Proof Lattice

As we see, the CHAIN diagram contains a self-edge, labelled by Py (this Lime drawn explicitly)
and a helplul edge labelled by 7). The process 1 is guarantend Lo get us to €. As a consequence

82

FAPE D SO TN TOND TR WP I T 1S DT TP O s e . PP ¥ W W T S W SO S Py

4
.. *® . _

PR

LIPS S Pl

ol

o

ol ol Ade s b s A b

PN !

PR AL APSn i o)

—

LI I b il 2em)

of this, by the EVNT rule, £ 2 ©¢,. This conclusion is represented in the prool lallice by a
single edge from €y to £;. Thus, the different choices of representation lead Lo the following minor
syntaclical dilferences between CHAIN diagrams and proof latlices:

(a) Proofl lattices are acyclic, whereas CIIAIN diagrams are only weakly acyclic, i.c., may
contain sclf-loops.

(b) In CIIAIN diagrams, edges arc labe ‘ed by the processes responsible for the transition.
Special identification is provided fo. edges traversed by the helpful process. In proof
lattices, we no longer care about Lhe identities of the processes since progress along the
lattice has already been established.

However these differences are minor and a simple procedure for translation between CIHAIN
diagrams and proof latlices exists. The important part in both is the identificalion of the in-
termediale asserlions that are represented as nodes. [n constructing a proof, this is usually the
creative and most demanding process. Both graph presentations provide a natural and intuitive
representation of these assertions and the precedence relations between them.

The chain-reasoning principle assumed a finite number of links in the chain. 1L is quite ade-
quate for finite-state programs, i.e., programs whose variables range over finite domains. Iowever,
once we consider programs over the integers it is no longer sufficient Lo consider only finitely many
assertions. In fact, sels of assertions of quite high cardinality are needed. The obvious gener-
alization ol a finite set of assertions {; | 1 = 0, ...,7} is to consider a single assertion ola),
parametrized by a parameter a taken from a well-founded ordered set (4, <). Obviously, the most
imporlant property of our chain of assertion is thal program transitions eventually lead from ¢
to p,; with 7 < 2. This property can also be stated for an arbitrary well-founded ordering. Thus
a nalural gencralization of the chain reasoning rule is the following:

The Well Founded Liveness Principle — WELL

Let (A, <) be a well-founded set. Lel p(a) = p(o; Z;7; §) be a parametrized

state formula.
Let h: & — [L.. k] be a helpfulness function identifying for each a € A the

helpful process Ppqy for states in o(a).

A, F Pleads from p(a) to ¥ Vv (3/} <a. tp(/)))
B. F Pha) leads from p(a) PV (][3 <a. p(ﬂ))
C. Fopla) 2 Oy v (I8 <a.p(B)) Vv Lnabled(Pyo))

F (Ja. p(a)) 2 (3a. p(a))Uyp

A justifieation of Lhis rule can again be conducted, based on induclion. Now, however, induction
over arbitrary well-founded sels is required.

.~ .
. JTDI..
e oot denihorstnidindnadedh

@
t
%

P TR S

. '.-.._L Al

-4 .
JgLJJJJ

‘

Ak Sd 4 2l

@
2

”3

PR OVIPR

. . -
PP R A!

| .y

15. EXAMPLE 4: BINOMIAL COEFFICIENT

As an example for the application of the WELL principle, we consider the following program
that computes the binomial cocllicient (:) for inputs 0 < k < n.

(y1,92,¥3,v4) := (n,0,1,1)
b : if y1 = (n—k) then go to ¢, ma: if yo =k then go to m,
2 : request(y,) my: Yo :=ya +1
bs: t,:=y3- -1 mg: loop until yy +y3 <n
by y3 =4 mg : request(yq)
€3 : release(ys) my: by = y3/y2
b yyi=y -1 mg : Y3 = lg
lg: go to &y msy : release(yy)
£, : hait my: gotomy
my : halt
- P - - P —

The labelling scheme of the program has been constructed in a way that simplifies the expres-
sion of the asserlion p(a).

The computation of this program is based on the formula:

() ==,

The values of y;, ie, ny,n—1, ..., n—k+ |, arc used to compute the numerator in /%, and the
values of yo, e, 1, 2, ..., k, arc used to compute the denominator. The process /2 multiplies
n-(n—1)---(n—k+1)into y3 while P, divides y3 by 1-2.-- k.

The instruction
mg : loop until yy +y2<n

guarantices even divisibility of y3 by yo. It synchronizes I%'s operation with that of [? Lo ¢nsure
that g3 is divided by 7 only aller (n — 2 + 1) has already been multiplied into it. We rely here on
the mathematical theorem that the product of 7 consceutive integers n-(n - 1) -+ (n -1+ 1) is
always divisible by ¢! {the quotlient actually being the integer ("'))

The critical scctions €3 5 and my 7 are mutually prolected by the semaphore variable yy.
This protection ensures thal yy is not updated by P between, say, the computation of ¥4 -y, and
the assignment of this value Lo y3. Without this protection, the updated value might have been
overwrilten by Py,

5,0
Ak

.) DT

.2,

»;

FPREPR Y W e

I R e T A e e e e e e T N - Ty = T .

We start by cstablishing some invariant properties of this program.
Iy: F (atlg.,5 + atmy 7+ yq4 = l) A (y4 > 0)
This is the usual semaphore invariant. It can be proven by observing that initially this sum
equals 1, and then by considering all possible transitions. For example, the &g — €5 transition

changes atfy s rom 0 (false) to | (true), and also decrements y4 by 1, leaving however the sum
conslant. I'rom Iy we can deduce mutual exclusion of the critical scctions, i.c.,

F (~8.5) vV (~ms.7).

As a conscquence of this we can establish:
ILy: F (€4 Dty =y3-y1) A (mg D ta =ys/ys)

This holds due to the impossibility of interference by % while) is at £4.
ILi: F (n—k+atly)<y <m.

This invariance stales thal y; always lics between n—k and n. When Py isat €y ¢, y; > n—k,
whereas 17y is at other locations, y; > n — k. To verily I3 we need only consider the transitions:

o {7 —+ fg which maintains n — k < y; < n, assuming it was previously known that
n-k<y <n,

o/y +fg whichresultsinn -k <y -1 <nfromn—k <y; <n.

Ihy: F 0<y, <(k— atmy).

This invariance bounds the range of yo. We need consider the transilions my — mg and
mg - my4 which can be shown to maintain 4.

Is: F atmy.g O (11 +y2) <n.

Here we should consider two transitions:
o g - mng which is possible only if currenlly y; + y2 < n.

e £y > ly is Lhe only transition modilying yy. [lowever since it deerements yy it
cerlainly preserves yy + y2 < n.

Let us define the lollowing virtual variables:

yi = if atlyy then y, — | else y,
ys = if atmg o then yy — | else yy
85

P S R S ST S N T L S . S oot v oo o PR

PR

l..

.

e fa i

.4..! astalta’s _a

PR

« _d . . _ st Aah A

Y -.a #_ s # 2 a4 D ra_ A\ An'a s -t

... .8

v et e a8 g aun aen 4
i g AR
PN LT . A
" PRI

LIAaL SR AT AT St Bt S AR AP N

Tw-r~y~—— =y 7 TR i e % T " . T T T T -5 7. 5"

These variables are roughly cqual to y; and ys respectively and dilfer from them by 1 in certain
ranges.

Ig: F ya=[n-(n—1)---(yf +I/[1-2---93).

To verily this invariant we have to check the transitions &4 — ¢35, mg — my5. Making use of
I3, they can be shown to maintain fg.

Ip: v [atly 2 yr=(n—k)] A [atm; D (y; = k)).
Using I, I; and the definition of yl*,y;‘ we obtain partial correctness of Lhis program, namely

F (atéy A atm) D [y3 = (})].

To prove termination we will use the WILL rule in order to establish - O(atéy A atmy). As
the well-founded domain we take

(A, <) =(N X N X N, <ez).

That is, the set of triplets of nonnegative integers ordered by lexicographic ordering. This ordering
defines (my, mg, m3) < (n1,ng,ng) iff for the lowest 2, ¢ = 1, 2,3 such that m; # ny, m; < n;.

For our goal asscrtion we take 4 : até; A atmy. The parameterized assertion is given by:
plas b, myynye): (Yi+k—ye, J, 1) = a
The helpfulness function is given by:
h(a) = hk(r,5,t) = (f i=1 then 2 else).

Thus as long as the first process I’ has notl terminated we rely on /7 to be the helpful process.
Once it has terminated, we take % to be the helpful process.

We have to show that all the three premises of the WELL rule are satisfied.

Consider first premise A. We have Lo show that every transition of I leads to o(f8) with 8 X «
if 9 is not already satisfied. By simple inspection of all the possible transitions we find that they all
lead from (€;,m;) to (£;;,m;+) such that either ¢ < 7 or 7' < j except for the following transitions:

o {5 — fg. But this transition deerements yy producing a stiict deerease in yy +k—y2
which is the first component in a.

e my — mg. In a similar way Lhis transition increments yy, leading to a decrease in
Y1 +k -y

e mg — myg. This transilion leaves a al the snme value.

Consider now premise B. As we have shown above, all Lransitions provide a strict decrease in
a. The only exception is mg — mg. However this is a Pp-transition which is considered helpful
only when Py is al &y, By [7, at this point yy = (n — k) so that in view of I, y1 + y2 < k and
hence the only Lransilion possible from my is mg - my.

86

Y

LY
4
B

- ..! PO

'Y

]
;

e e e B

L

Y Y VT Y v
L]

SRS DO ¢ A

Lanan a did e
SEASAN RAGIDEVDE

To show premise C we have to prove thal Py is always evenlually enabled. Consider first the
case that A = 1. The only location in which it is nol immedialely enabled is when Py is at ¢
while % is at mg 4 (in view of /). However by simple chain reasoning it is obvious that in such
a case, I’ will certainly reach my in which y4 becomes positive and P) enabled.

The case h = 2 is cven simpler because it is only considered when Py is at ;. Consequently,
cven when P is al mg, which may potentially raise some problems, we have in view of I} and até,
that y4 > 0 and P4 is cnabled.

Thus we conclude that ¥ : at€y Aetm, must eventually be realized and thercfore the program
must, terminate.

16. PRECEDENCE PROPERTIES

The next class of propertics we will consider and provide proof principles lor is that of prece-
dence propertics. These are properties, usually nceding the U operator for their expression, which
ensurc that some event precedes another event, or thal a certain event will not happen unlil an-
other event happens first. In view of the fact that the basic FAIR and EVN'T rules did actually
provide a conclusion containing the U operator, they may be naturally utilized Lo form precedence
proof principles which are generalizalions of the corresponding liveness principles.

In the following we will often consider nested until expressions in which the nesting always
occurs in the second argument. We therclore adopt the convention of representing the nested
formula:

on U («p,, U (e U goo)...))
by:

on bz 1 U ...01 Upo.

The semantic meaning of this formula is that, starling from the present there is going to be
a period in which g, continuously holds, followed by another period in which ¢, ¢ continuously
holds, ..., followed by a period in which ¢ continuously holds, until finally g occurs. Any of
these periods may be empty, butl the occurrence of pg is guaranteed.

et us consider first the proper generalization of the CHAIN rule in which we assume a finite
chain of assertions ¢,, v, 1, ..., p1 leading to Lhe goal ¥ = ¢q.

Let 0 < pyp € pe € ... < ps = r be a partition of Lhe index range inlo s contiguous
segments. Then we may formulate the following chain principle for precedence propertics:

87

Y

c‘JJ‘ Yy L’

PTRTTTET :g“k

B]

L T ——Tw e e T T rar—————————"—sw Sl i Al

The Chain Rule for Precedence Properties — P-CIIAIN

Let oo, 01, ..., @, be a sequence of state assertions, and
0=py < p1 <p2 < ... <ps,=r a partition of
1..r).

A. F P leads from ¢, to (V(p,-) for i=1,...,r.

¥<i

B. TFor every 1 > 0 there exists a £ = k; such that:

Py leads from ; to (V ©;)
i<t
C. TFor 7 > 0and k = k; as above:

F o 2 O[(\/ @) Vv Enabled(P)]
I<i

F (Vo) 2 (Ut 1. %1 Upo)

i=0
where
e I8 V p; fort=1,...,s
Pe-1<3<pe

The conclusion stales that starting al a state that satisfies one of the p;, 2 =10, ...,7, we
Ps

are guaranleed Lo have a period in which (V @) conlinuously holds, followed by a period in

J=ps-1+1
Ps-1
which (V p;) continuously holds, ctc., until oy is finally realized. Any of these periods may
J==pa atl
be empty.
Proof:

To juslily the soundness of this conclusion we will first prove it for the most refined partition
possible, namely:

1 4

(V‘Pi) 2 (‘Pruwr---luwr 2U---S01U<Po)-

i=0
This is proved in a way similar to the justification of the corresponding liveness principle. We
show, by inducliononn, n=0,1, ...,r, that

n

F (Vo) 2 (prlipn 1l ..o Upo).

1=0

I'or n = 0 we have F g D py which is Lhe induclion statement for n = 0.

88

T S S T N T I . S I Y T T O T L S N e

e e

| VOB

NORRPE . J R

"-CJ«_‘_‘L;‘L

. -
o das

R

[
g o .

‘
-
4]
o
]

r..... ty

Assume that the statement above has been proved for a certain n and counsider its prool lor
n4 1.

n
Consider the EVNT rule with ¢ = @41, ¥ = (v ©i). Asshown in the proof of the liveness
1=0
case, all the premises of the EVNT rule are salislied. Consequently we may conclude:

n
F Ontt D @asr U (V‘Pi)-
i—0

By the induction hypothesis and the UU ruie this yiclds

Fonet D ©ntt U(en U .. 010 Upg).

Due to F v D (ullv) which is a conscquence of axiom A9, the induction hypothesis can also be
wrilten as

n
F (V‘Pi) D Oatt U (pal .. .01 Upg).
1=0
Taking the disjunction of the last two gives

ntt

F(V®) 2 onriU(pnl ...01Upo),

=0
which is the required statement for n + 1.

Consider now a coarser partition:

O=p<p<p<...<p=r.

By conseculively mcerging any two contiguous assertions that fall into the same partition cell, using
theorem T38:

F (o U Up)) D ((pitr Vi) W),

we obtain the coarser conclusion:

n+1

F (___/<p,-) 5 ((V oedu(V e)t . (V o) u(,,(,)). r

Ps l<j(P, P z<f‘/Pn 1 ()<].‘\'p|

Examples:

As our first example, let us consider the Mutual Ixclusion program analyzed above. We have
already proven that mutual exclusion is maintained by this program. We have also proven the
liveness property that if 7) wishes Lo enter its eritical scelion it will eventually gain access Lo it.
A more diseriminaling question is that of how fair is our algorithm. That is, il 12, wishes Lo enter

89

- PR TP W T WP PR I L AP S ST S S S I WP PR - o B P P P PR WO SR

PR dhas 2ng e £ it Sat) - O EEAECI A i e M e i DRt i e Al Shal S Jandh e e d e e e S aean et Smat el s R ey

PP

@

2

»
a—

. .. e e, . \ ..) . . \
. DRI . DRIy | . Ol . ®
A s amaadasaaa FOPLILS ko PV RPN - S S I N) Py ORI T SR T S f 80 T aTen' B oam— Aanteaialn

]
L2V S

s &

+ ‘D ROV S PR TR S

-

its critical scction, how many times will /% be able to enler ils own crilical section before 12,7 Is
that number bounded? We refer to this question as the problem of bounded overtaking. Namely,
how many times can P, overtake [before f7) enters his eritical section.

Our (irst analysis makes use of I"ig. I without any modifications. We only read from it the
stronger conclusion according to the stronger P-CHAIN rule. As a partition we choose p; = 7,
p2 = 9, py = r = 11. Consequently, from the diagram of Fig. 1 we conclude by the P-CHAIN
rule:

k (\7@*) > ((\’}W) U (Ve u (\7/%‘) U o).

1=1 1=10 1=8 =1

Replacing ecach of the right hand side disjunctions by a weaker properly and the left hand side
disjunction by a stronger statement we obtain:

[33’4 2 ((~m5,6) U ms ¢ U (~m5,5) U £5).

This implies that if /7 is at the wailing loop in 43 4, there will be a period in which Py is
not in the critical section msg, followed by a period in which P is inside the critical section my g
followed by a period in which % is outside the critical section which terminates by) entering
his critical section. Since any of these periods may be empty this is & worst-case analysis. Bul it
certainly assures I-bounded overtaking, i.e., once P’y is in €3 4, I% may overtake it at most once.

Having successfully analyzed the situation from €3 4 on we may attempt to obtain a similar
analysis from the moment that Py enters £y,

This analysis calls for a refinement of the diagram of Fig. 1. The following is o subdiagram
that should replace the node corresponding to py2 in ig. 1. It consists of three nodes labelled
respeclively @75, 0o.5 and @1.5. The lractional indexing indicates thal pg.5 should be inserted
between 7 and pg in Iig. 1. The edges out of 3 should enter one of these three nodes. dges
out of p7.5 lead Lo some of py, ..., p7.

P
pr.5: | Lo, (mya At =2)V g o Vm ==>{p 1}
Dy
— Iy
Po.5: L’f'z_;ms.s ===2{p4,9}
N
Py

Pr1.5:

i P
ly,ng g, t =1 I‘—_~=>{30m,n}

Similarly for edges oul of pg.5 and py1.5. Considering the updated diagram composed of Iig.
I and the above subdiagram we obtain the Tollowing conclusion:

F f2.4 D ((_/ o) U (\/w.) U (VW:) U ‘Po)-

90

PRI S B SIS P SR) as) 3 PP D I W O T S Y N .

. . s .-
A’_:.“A“A‘_‘JA — Ak PR 3 P LI Sy

This again leads to
F 24 D (("’7715,6) U ms. ¢ u (N’ms,s) u 55),

which ensures 1-bounded overtaking even from £;. Tncouraged by this, we may next ask whether
a similar result can be obtained from £;. Unforlunalely this is not the case. Fp may entler its
critical scetion an arbitrary number of times while Py is at €;. This is obvious since while being
at €y, I’y has not yet modificd any variable in a way that will show that it is not still in &y. And
naturally while P is at &y, P2 may enter the critical seetion any number of limes il the algorithm
is correct.

THE WELL-FOUNDED PRINCIPLE FOR PRECEDENCE PROPERTIES

A natural extension of the P-CITAIN rule to programs that require infinite chains of assertions
again uses well founded ordered sets.

Let (A&, <) be a well founded ordered set. We require however that the ordering is total (or
linear). That is, for every two distinet elements a(, ap € 4 cither @y < ag or ag < aj.

Well Founded Precedence Rule - P-WELL

Let p(a) = p(a;7;F) be a parametrized state asscrlion
with a € A.

Let h: A — [L .. k] be a helpfulness function.

Let ay < ap < ... < &, be a sequence of elements of 4.

F P leads from p(a) to 9 v (38 < a. p(B))
F Ph(ay leads from pfa) to ¢ v (38 < a . p(8))
Fole) D Ofp v (38 <a. o)) V Enabled(Pra))]

F (Ja<a,.p@) 2 (s Uhs 1 U ...y U
where

e is Wlag 1 <B2ay).p(B) fort=2, ...5 and

Py is BB 2 o) . p(B)

"

*
.
|

Note that while Lthe range of the parameler in the assertions is infinite, the partition is still
finite.

!
aal d o at o st LA_.i.!

Acknowledgement:

Cancamcatn
‘..1.14~

We thankfully acknowledge the help extended o s by Yoni Malachi, Ben Moszkowski, Stuart
Russell, and Frank Yellin in reading the manuseript. Special thanks are due to Bvelyn Eldridge-
Diaz for TEXing the manuseripl and Lo Carol Weintraub lor typing its liest draft.

.
3

|
-1

DAO . 4 P

91

!

:

|

5

i

2

{ .
T

REFERENCES

[H] Hoare, C.A.R., “Communicatling Sequential Processes,” CACM 21 (1978) pp. 666-677.

[ILL} Tgarashi, S., Londen, R.L., Luckham, D.C., “Automalic Program Verification I: A
Logical Basis and Its Iinplementation,” Acta Informatica, Vol. 4, No. 2 (1975), pp. 145-
182.

[KR} Kuiper, R. and de Roever, W.PP. “Fairness Assumptions for CSP in a Temporal Logic
Framework,” TC2 Working Conference on the Formal Deseription of Programming Con-
cepts, Garmisch (June 1982).

[L1] Lamport, L., “Proving the Corrcctness of Multiprocess Programs,” IEEE Trans. Soft.
Eng. SI&-3, 2 (Mar. 1977), pp. 125-143.

[L2] Lamport, L., “ ‘Sometime’ is Sometimes ‘Nol Never’: On the Temporal Logic of Pro-
grams,” 7th Annual ACM Symposium on Principles of Programming Languages (1980),
pp. 174-185.

[LPS] Lehmann, D., A. Pnueli, and J. Stavi, “lmpartiality, justice and fairness: the ethics
of concurrent termination,” in Aufomata Languages and Programming, Lecture Notes in
Computer Science 115, Springer Verlag (1981), pp. 264-277.

" r

[M] Manna, Z., “Verilicalion of Sequential Programs: Temporal Axiomatization,” Theoret-
ical Foundations of Programming Mecthodology (M. Broy and G. Schmidt, cds.), NATO
Scientific Series, D. Reidel Pub. Co., llolland (1982), pp. 53-102.

[MP1] Manna, Z. and A. Pnuecli, “Verification of Concurrent Programs: The Temporal
Framework,” in The Correctness Problem in Computer Science (R.S. Boycr and J S.
Moore, eds.), International Lecture Series in Computer Scienee, Academic Press, London
(1982), pp. 215-273.

[MP2] Manna, 7. and A. Pnueli, “Verification of Concurrent Programs: Temporal Proof
Principles,” Proc. of the Workshop on Logic of Programs {D. Kozen, ed.), Yorklown-
Heights, N.Y. (1981). Springer- Verlag Lecture Notes in Computer Scicnce 131, pp.
200-252.

(MP3] Manna, Z. and A. Pnucli, “Verification of Concurrent Programs: Proving Eventualities
by Well-Founded Ranking,” TOPLAS (1983, to appear).

[MP4] Manna, Z. and A. Paueli, “llow to Cook a Temporal Proof System for Your Pet
Language,” in the Proc. of the Symposium on Principles of Programming Languages,
Austin, Texas (Jan. 1983).

[OL] Owicki, S. and L. Lamport, “Proving Liveness Properties of Concurrent, Programs,”
ACM Transaclions on Progranmiming Languages and Systems, Vol. 4, No. 3 (July 1982),
pp. 155-495.

[Pe] Peterson, G.I., “Myths about, the Mulual Exclusion i'roblem,” Information Processing
Letters, Vol. 12, No. 3 (June 1981), pp. 115-1186.

[PS] Pnueli, A, and R. Sherman, “Semantic Tableau for Temporal Logic,” Technical Report,
CS81-21, The Weizmann Institute (Sept. 81).

92

| .
“._‘\-..“AA‘_‘.“‘..

‘e
eadodedund ab

1
S,

2L

o T e " T . .
. ST :
Aa. A Lot 4 o4 4 14“‘! y - -

S ad dad

_‘44.‘!. aaa 4 . Py

